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Abstract

The objective of this project is to investigate the possibilities of recogniz-
ing plant species at multiple growth stages based on RGB images. Plants
and leaves are initially segmented from a database through a partly au-
tomated procedure providing samples of 2438 plants and 4767 leaves dis-
tributed on seven di�erent species. The segmentation process �nds plant
elements through a colour segmentation method combining excessive green
and excessive red and the Plant Stem Emerging Point algorithm to separate
leaves from plants. These plant elements are then described by 50 di�erent
feature descriptors or 261 single feature values jointly describing shape, con-
tour and colour of the plant. The 50 features include many common features.
Nevertheless, three of the most distinct features are; the proposed and bet-
ter performing variation of the Distance Transform feature, a fully rotational
variant Elliptic Fourier descriptor, and the proposed feature, that measures
the distance between the adjacent Fourier approximations of contours. A
subset of the features are selected through di�erent selection methods in or-
der to improve the classi�cation accuracy for three di�erent classi�ers; the
Multivariate Gaussian classi�er, the k-Nearest Neighbour classi�er and the
Support Vector Machine classi�er. Finally, classi�er fusion is performed by
using Bayes Belief Integration to combine the classi�cation for the whole
plant with the individual classi�cations of the leaves of the plant in order to
identify the most likely species of the given plant. By exploiting the discrim-
inating advantages of plants and leaves an improved identi�cation accuracy
of 95.8% is achieved.
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Nomenclature

Table 1
The Term inology used in th i s report

Acronym Description page

BBCH Bundesanstalt, Bundessortenamt und CHemische Industrie 1
BBI Bayes Belief Integration 114
CA Classi�cation Accuracy 76
DT Distance Transform 56
EF Elliptic Fourier 64
ExG Excessive green 6
ExR Excessive red 6
ExG-ExR Excessive Green minus excessive red 6
FCM Fuzzy C-means 15
GK-FCM Gustafson-Kessel C-means 16
HSI Hue-Saturation-Intensity 6
kNN k-nearest neighbour classi�er 78
MDA Multiple Discriminant Analysis 95
MVG Multivariate Gaussian 82
OSM Optimal Segmenting Mask 10
PCA Principal Components Analysis 21
PSEP Plant Stem Emerging Point 24
RBF Radial basis function kernel 79
RFE Recursive Feature Elimination 101
RGB Red-Green-Blue 6
ROI Region of Interest 50
SVM Support Vector Machine classi�er 79
TV Total variation 35
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Introduction

As the world's population is steadily increasing, it is necessary to continu-
ously improve the cultivation methods that are used in agriculture.
In order to improve the conditions for plants and thereby improve the yield
of the harvest, the amount of weeds in the �eld has to be minimized. In
farming today, the preferred method used for minimizing weeds is to apply
pesticides to the �eld. The amount of pesticides used in the EU-15 coun-
tries is on average 3.88kg/Ha of active ingredients. However, in Belgium
and the Netherlands pesticide usage exceeds 10kg/Ha[1]1. This provides an
e�ective removal of weeds, which is crucial for crop yield and thereby for the
farmer's prospects for keeping up a pro�table business. The overall loss to
weeds without doing weed control is estimated to 34% by [2], though other
research projects[3] document a loss of between 48% and 71% for tomatoes
depending on the weeds and locations and 23% for wheat when there are
�ve Canada thistles per square meter[4]. However, the usage of pesticides
comes to the detriment of the environment.
In addition to this, there is a growing governmental pressure on farming,
imposed through regulations and taxes to limit the usage of herbicides, be-
cause of the unwanted impact that the herbicides have on the environment.
Therefore the farmer, according to EU directive 2009/128/EC [5], has to
investigate which weeds are present in the �elds in order to apply to his �eld
as speci�c a mixture of pesticides as possible. This can be a time consuming
task, especially in large scale farming, but this task could be overcome by
deploying automatic weed detection. Moreover, the directive requires that
the amount of herbicides used should be kept at the minimum level neces-
sary to do the job.

At the same time, the global market for organic products is increasing [6],
leading farmers to demand a better coe�cient of utilization on the organic
�elds. If the individual weeds can be located, they can be controlled using
e.g. water steam, oil, mechanics[7] or by using lasers [8].
When doing weed control it is still bene�cial to distinguish the weeds from

1Based on 1998 numbers
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Introduction

each other. Some weeds are not harmful for the crops and could therefore be
left in the �eld; thereby some of the land's biodiversity would be preserved.
Furthermore, the turning of the soil that would also be avoided by leaving
unharmful weeds in the �eld will also prevent more harmful weeds from
emerging.

To make the environmental friendly farming and the organic farming
more competitive to conventional farming, di�erent weeding methods have
been listed below:

• Optimal herbicides mixture: An inspection of the �eld to identify the
di�erent species and the amount of weeds in the whole �eld or in
sections of the �eld. Based on the inspection, the optimal mixture
of herbicides is sprayed traditionally in the �eld or in smaller sec-
tions, avoiding the use of unnecessary or excessive amounts of her-
bicides. By doing this, it it possible to reduce the used amount of
herbicides with at least 40% for cereals[9], which also results in sav-
ings estimated to 154DKK/Ha for winter cereal and 54DKK/Ha for
spring-sown cereals[9]2.

• Coarse precision spraying: The �eld is divided into sections and each
section is thereby evaluated in order to determine the amount of weeds
present in the �eld. After this, pesticides are applied traditionally
within each section but adjusted to the amount necessary for the given
section. Cf. [10], reductions between 20% and 72% are to be expected
from following this approach.

• Mechanical weeding: A mechanical hoe is used to automatically remove
unwanted weeds. A mechanical solution is expected to be slow and
require lots of maintenance compared to spraying, but fully avoids the
use of pesticides. The principle has been implemented in the Robovator
made by F. Poulsen Engineering ApS[11]. However, the performance
of this machine is limited in that it only distinguishes crops from weeds
by size.

• Organic precision spraying: Weeds are located and controlled with
organic materials such as water steam or oil.

• Precision spraying: This method deploys knowledge about plant and
weed positions. The aim is to achieve an optimal utilization of pesti-
cides, where crops are sprayed with fertilizer and weed with herbicides.
Studies show that by doing precision spraying, the amount of pesticides
can be reduced with up to more than 99% of the amount used in con-
ventional spraying methods[12].

2Based on 2007 numbers
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Reading guidelines

An implementation of the above methods in a robust and cost e�cient system
could revolutionize modern farming by making possible a new environmental
friendly alternative or perhaps a cheaper production of organic products.
Several of these methods have been tried out, but they lack a fast and
robust method to distinguish weed from crops or recognize plants species in
general, providing a strong argument for the relevance of this project[13].

Reading guidelines

The Chapters 1 to 6 presents the chronological stages in the system. The
chapters are provided with an introduction and discussion enabling the chap-
ters to be read individually, but should, for a better understanding, be read
in chronologically. The remaining chapters Results and discussion, Future
work and Conclusion in Chapter 7, 8 and 9 sum up and discuss the results
achieved throughout the report.

In the project, we alternate between two domains; plant identi�cation
and pattern recognition in general. A class is typically used in pattern
recognition to de�ne a certain object that needs to be classi�ed, equivalent
to a plant species in the plant domain. Plant elements are used as a general
term to describe the three elements that are in concern here: The plant
(including its leaves and stem), its cotyledon leaves and its foliage leaves.
A plant struct refers to a structure containing information about the three
elements for a certain plant, may it be the image or the classi�cation result
of each plant element. The de�nition of a plant and the plant struct is easily
confused, but there is a distinct di�erence. The classi�cation of a whole
plant is based on the features determined by the image of the plant, while the
identi�cation of a plant struct is a combination of the classi�cation results
of, respectively, a plant, the cotyledon leaves and the foliage leaves. For
convenience, plant species are often referred to as class number 1-7 according
to Table 1.1 in chapter 1.

The project includes multiple Matlab scripts to help others implement
and achieve similar results faster. The directions to these scripts are refer-
enced in footnotes throughout the documentation.

Project description

The project is based on the work of the authors' master thesis in Infor-
mation Technology at Aarhus University School of Engineering, and is part
of the ongoing project �Sensorbaseret Graduering af fungicider og herbicider
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Introduction

i karto�er og korn� (Sensor-based modulation of fungicides and herbicides
in potatoes and cereals), which is a co-operation between Faculty of Agri-
cultural Sciences and Department of Agroecology - Crop Health at Aarhus
University under the leadership of Peter Kryger Jensen.

Problem de�nition The main problem in the domain of plant recognition
is the variance within the same species. Plants are soft and sensitive to
outer factors such as wind, light, nutrition and insects, which have impact
on the colour, shape, texture and structure of the plant and its leaves. One
species will also be hardly recognizable through its di�erent growth stages as
the plant will have small to none visual resemblance between the stages of,
respectively, sprout, cotyledon plant and full grown plant as can be seen for
scentless mayweed in Figure 1 and for the other species in Appendix O. Even
at the same growth-stage, there can be a big variation in the appearance of
the plants.

0 1 52 3 4 cm

(a)BBCH 12

0 1 52 3 4 cm

(b)BBCH 12

0 1 52 3 4 cm

(c)BBCH 13

0 5 20 cm10 15

(d)BBCH 14

Figure 1: Example on how eg. scentless mayweed changes characteristics through dif-
ferent growth stages

To decrease the amount of herbicides needed, weeds have to be controlled
at an early growth stage. This leads to other challenges, as the cotyledons
are the �rst leaves to appear, but they are quite anonymous compared to
the foliage leaves, that are the ones carrying most of the �identity� of the
plant.

Contribution In the literature of plant recognition two approaches have
been applied in order to identify plants using either the whole plant[14, 15,
16, 17] or its leaves[18, 19, 20]. The �rst approach, describing the whole
plant, is the most applied procedure in recognition of crops for autonomous
robotic weed control using images. The natural reason for this is that leaves
are not naturally separated from plants in the �eld, whereby the whole plant

xiv



Project delimitations

can be handled without extracting leaves from the images. The second ap-
proach, describing the leaf, is mostly applied under controlled conditions,
where the leaf has been physically or manually extracted from the plant as
the leaves are hardly extracted automatically. The advantage in a classi�-
cation of leaves is that leaves roughly maintain their shape and appearance
throughout the di�erent growth stages, and that leaves are not so a�ected
by damage from external impacts compared to whole plants. At the same
time, the leaves will provide some redundancy, so e.g. a plant having one
misshapen leaf could still be correctly identi�ed, if it also has three well-
shaped leaves. The drawback of using leaves in autonomous weed control,
that identi�es plants in the early growth stages, is that cotyledon plants
have anonymous leaves in an early stage. The di�erences between plants are
therefore presumably better at identifying species in the early stages as the
variation between leaves is small.

Goal The aim of this report is to investigate and propose di�erent methods
identifying plants species based on raw RGB images. This approach seeks to
segment a plant and its leaves in order to exploit the discriminating strength
of both elements to provide an improved identi�cation. In this process,
methods for handling varying growth stages and di�culties related to the
softness of plants will be investigated.

Project delimitations

In real-world applications of this technology,where the camera is mounted
on a robot, driving in the �eld, further information is available, which will
help the classi�cation process. That information is for instance: which crops
are in the �eld and when they have been sown and the approximate distance
between them. With this information, the uncertainty is not only bound to
the image-features, but e.g. the spatial location of the weed. An approach
known as a row guidance system has achieved a high level of automation
and some commercial success[3]. The concept, is that crops are positioned
in rows and weeds are outside these rows. Plants are therefore not classi�ed
on their visible characteristics, but on the position in accordance to the row
of the corps. In [21, 22] the row of crops are determined through a Hough
Transform based procedure.
Another approach described in [3, 23] uses an RTK GPS position system
to map the crop seeds during planting. Plants located far from the seeding
points are then simply classi�ed as weed.
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Introduction

Prior knowledge about where the crops have been planted/sown could
also be combined with a vision system, so that the inter-row distance of the
crops are known with some uncertainty, which helps determine the certainty
that crops are observed in the images.

Studies also show that the non-visual plant re�ectance can be useful
in plant species identi�cation for both imaging (cameras) and non-imaging
sensors [24].

Though these di�erent techniques have been applied in research, this
project is delimited to plant recognition based on RGB images using features
derived from visible characteristics.

The project treats the images of the provided dataset and will not directly
access more machine vision related problems concerning images under e.g.
less optimal light conditions. Furthermore, the project does not directly treat
practical implementation issues such as computational cost and platform
speci�c subjects.

Project outline

The project outline is shown in Figure 2 providing an overview of the
major parts of the project. The �rst part �Data Acquisition� in Chapter 1
describes the collection of images of 12 di�erent species at di�erent growth
stages. Each image contains only one species at a speci�c growth stage.
The Data Acquisition has not been done within this project, but provides
a good foundation for the proceeding parts of the project. The raw images
are fed into the �Segmentation� component described in Chapter 2. The
component must segment all plant-material by removing soil, gravel and
other non-plant elements. The remaining elements in the image can now be
divided into four groups; whole plants, overlapping plants, single leaves and
non-plant material. Manual procedures transform these elements into whole
plants and discard non-plant elements. The plants are then automatically
divided into leaves and manually labelled as either cotyledon or foliage leaves.
Hereby the �Segmentation� provides three plant elements to be recognized;
the whole plant, cotyledon leaves and foliage leaves. The segmentation is only
performed for 7 species of the 12 di�erent species due to time constraints.

The project path then splits into three parallel sub-paths, each of which
makes an individual recognition of one of the three plant elements. Each
plant element is fed to the next stage �Feature Descriptors� documented in
Chapter 3, which describes the process of extracting features using shape,
contour and colour. All features for each plant element is then feed to the
�Classi�er� stage described in Chapter 4. The classi�cation of the plant el-
ements are made using three di�erent classi�ers; the multivariate Gaussian
(MVG) classi�er, the k nearest neighbour (kNN) classi�er and the support
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Project outline

Data
Acquisition

Segmentation

Classifier Fusion

Chapter 1

Chapter 2

Chapter 6

CotyledonWhole plant

Feature 
Descriptors

Classifier

Feature Selection 
and Dimension 

Reduction

Chapter 3

Chapter 4

Chapter 5

Feature 
Descriptors

Classifier

Feature Selection 
and Dimension 

Reduction

Chapter 3

Chapter 4

Chapter 5

Foliage

Feature 
Descriptors

Classifier

Feature Selection 
and Dimension 

Reduction

Chapter 3

Chapter 4

Chapter 5

Figure 2: An overview of the di�erent steps in the project.

vector machine (SVM) classi�er. The next component called �Feature Se-
lection and Dimension Reduction� described in Chapter 5 will reduce the
number of features or dimensions to improve the classi�cation accuracy. The
features will have di�erent discriminating power depending on whether they
are tested on whole plants, cotyledons or foliages. The feature selection is
therefore performed individually on the three plant elements to elect the
most discriminating features for the given plant element. The result of �Fea-
ture Selection and Dimension Reduction� will be a set of features and a
classi�er targeted for each plant element, namely the whole plant, cotyle-
dons and foliages. The �nal step �Classi�er Fusion� described in Chapter 6
connects the three sub-paths by combining the classi�cation of each plant
element to perform a single identi�cation of a plant struct.
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Chapter1
Data Acquisition

The data material for this project is based upon an image database cre-
ated by Thomas Mosgaard Giselsson as part of the project �Graduering af
fungiciders og herbicider i karto�er og korn� (Graduation of fungicide and
herbicide in potato and cereals). The material consists of images of 12 plant
species taken over two weeks and mainly covering the growth stages from
BBCH 10-14. The BBCH-scale is a coding scheme to specify the growth
stage of a plant[25, 26]. Of these 12 species, only the �rst seven are used
in this project. Originally 14 species were sown, but Redshank and Field
Pansy did not grow well and are therefore not present in this study. The
rest of the species are listed in Table 1.1 and samples for each species can
be found in Appendix O.

# Species Growth stages (BBCH)

1 Maize (Zea mays) 10-14
2 Wheat, winter (Tricicum aestivum) 10-15
3 Sugar beet (Beta vulgaris) 12-14
4 Scentless mayweed (Tripleurospermum perforatum) 12-14
5 Chickweed (Stellaria media) 12-23
6 Shepherd's-purse (Capsella bursa-pastoris) 12-20
7 Cleavers (Galium aparine) 12-33
9 Charlock (Sinapis arvensis) 12-33
10 Fat Hen (Chenopodium album) 12-14
11 Cranesbill (Geranium pusillum) 12-19
13 Black-grass (Alopecurus myosuroides) 10-15
14 Loose Silky-bent (Apera spica-venti) 10-15

Table 1.1: The 12 species in the database listed with the growth stages for which they
are present

1



Chapter 1. Data Acquisition

For each of the 12 species, the plants have been sown in four plant trays
measuring 21cm× 27cm. These plant trays have been covered by �ne, light
gravel and the plants have grown under comparable conditions.
All images are taken by a Canon 600D RGB camera using ISO100 to decrease
the amount of colour noise. The camera set-up is illustrated in Figure 1.1a.
The set-up consists of the plant trays, a photo box and a camera with a
di�used �ash. The plant trays are placed at the bottom of the box, and the
camera is mounted at the top, facing downwards. The photo box is white,
which helps spread the light from the �ash and thereby make the plants
well-illuminated, while still avoiding strong shadows. With this set-up, all
images are taken from the same height with the same background and the
same illumination. These conditions help in the segmenting of the plants, as
the variations in the colours of the background and plants are small. When
dealing with plants in the �eld, the conditions will not be as ideal as in this
case; the soil will have di�erent colours and the nutrition levels are non-
static, which increases the variation in the colours and sizes of the plants.
However, illumination in the �eld can somewhat be controlled by shielding
the camera and plants from sunlight [16, 27]. In addition to this, no visible
marks from insects have been found in the dataset, which would also make
the images less ideal.

Camera + flash

Plan
t tr

ay

Photo box

(a)Camera setup.

21
cm

27cm

(b)Database sample of scentless mayweed

Figure 1.1: The camera is placed in the top of the photo box and the plant tray is placed
at the buttom. the box is closed, so that the only light source is the camera
�ash, which ensures the same illumination in all images.

All images are taken from the same height, meaning that the scale of
the plants relative to their actual sizes is close to identical for all plants.
However, the leaves are not always perpendicular to the camera lens, and
this introduces some variation in the appearance of the leaves in the images.

2



Chapter2
Segmentation

In image pattern recognition - as well as in the �eld of plant recognition -
segmentation is often necessary to isolate the elements that are to be classi-
�ed.

Segmentation was initially thought of as a minor process in which plant
elements could be found by simply extracting connected green components
from an image, but as our knowledge and understanding of the domain has
grown it became obvious that creating a good (enough) database requires a
lot of e�ort. Firstly, the database consists of many GB of data that must
be handled in a smart and fast way. Secondly connected green elements
are not always a single plant, but may also be a single leaf or overlapping
plants. Therefore, it is necessary to approach the segmentation in several
steps: Leaves must be connected to whole plants, overlapping plants must
be segmented into single plants and �nally leaves should be extracted from
whole plants. The segmentation process consists of seven steps, which can ei-
ther be performed by automated algorithms or through a Matlab developed
segmentation tool, that combines automated segmentation with manual ver-
i�cation of the plants to ensure that labelling of plants, leaves, growth stages
and other information is correct. The di�erent steps are shown in Figure 2.1.

1. The process takes an RGB image and returns a binary mask of plant
elements as illustrated in the �gure. The process is described in Sec-
tion 2.2.

2. The process connects green objects that belong to the same plant and
store the individual plants in structs containing an RGB image of the
plants without background.

3



Chapter 2. Segmentation

1. Segmenting 
plant elements 

2. Connect 
green 

components

3. Divide 
overlapping 

plants

4. Connect single 
leaves and 

elements into a 
whole plant

5. Divide plants 
into single 

leaves

6. Label and 
evaluate leaves

7. Label growth 
stage

RGB image

Plant Struct

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

R-click make lines to seperate plant. L-click split lines. Navigate with arrows. SPACE new image. ESC to redo dividing

Figure 2.1: An overview of the di�erent steps in the segmentation process.

3. Overlapping plants are divided into single plants through the segmentation
tool described in Section 2.5. The process stores whole plants and dis-
cards the remaining parts.

4. This step consists of a manual process, connecting leaves or pieces of
plants into whole plants.

5. Plants are divided into single leaves. Two methods for doing this are
investigated in Section 2.3.

6. The cotyledon and foliage leaves are labelled and evaluated manually.

7. The growth stages of each plant are labelled manually.
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Related work in the �eld of plant segmentation

The segmentation process returns a struct that will contain an RGB, greyscale
and a binary image of the whole plant and the leaves within the plant. The
struct also contains information about the growth stage and the species of
the plant. Leaves are also labelled as either a cotyledon or a foliage leaf.
The process is only performed on 7 of the 12 species provided in the data
acquisition.

2.1. Related work in the field of plant segmentation

Di�erent recording and segmentations methods can be used to extract
plants from the background in images. One branch of segmentation uses
RGB images, which cover part of the vision light spectrum (400nm to 700nm)
[28]. By performing a su�cient colour transformation of the image, green
colours will stand out whereby green elements can be found by thresholding
the image[28, 29, 30, 31]. The second branch of segmentation uses non-visual
light or hyper spectral imaging, which exploits the fact that plants also re�ect
other electromagnetic waves than visible light, as shown in Figure 2.2. In
[32] images are recorded in the near-infrared spectrum (IR) (770-1.150nm)
and in the visible red spectrum (610-670nm).
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Figure 2.2: Re�ectance of green leaves (after [33, p. 149])

Adjusting brightness of both images and subtracting them (IR-VIS) en-
ables a robust segmentation of plants. In another study [34], the re�ectance
properties of the volunteer potato plant and the sugar beet were measured at
multiple wavelengths in a band from 450 to 1650 nm. The ten most optimal
wavebands were determined and used in the classi�cation of the two plants.
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Chapter 2. Segmentation

The method cannot be used directly when segmenting plants, but it shows
that plants emit non-visible electromagnetic radiation in the near IR area
that can be used in segmentation.

Both segmentation branches perform well, but in a practical design the
combination of visible and non-visual light will provide a more robust so-
lution, as the colour of a plant is dependent on light condition, soil and
other conditions. However, due to the fact that the database in this project
only consists of RGB images, and that these images only show green plants
that have been recorded under good conditions concerning constant light-
ing, same/constant background, no-shadows and same growth conditions, a
colour transformation is used.

Lastly, a set-up using additional cameras to capture non-visible frequen-
cies will also add an additional cost to the set-up, and it will also require a
form of alignment/registration of the di�erent cameras.

2.2. Segmenting Plants using Colour

A classical colour transformation used in image processing is the hue,
saturation and intensity (HSI) colour model, as the transformation decouples
the intensity from the colour information (hue and saturation)[28, p. 407].
Figures 2.3a, 2.3b and 2.3c show a regular transformation of an RGB into
respectively hue, saturation and intensity on a sample.
A problem with the HSI model is that Hue is unstable around dark intensities
(R = G = B = 0), and when the saturation is low (R = G = B)[29]. To
improve the stability, pixels with a saturation below 0.2 and dark intensity
below 0.1 are removed as shown in Figure 2.3d. Green material is segmented
using a broad green criteria by thresholding hue at ±60◦ around the centre
of green (120◦). In Figure 2.3e the hue values are shifted 120◦ so green pixels
will present an intensity of 1, while non-green pixels are placed around 0.
The shifted hue image is thresholded creating a binary mask showing the
plant shape. The mask is used in Figure 2.3f to get the RGB information
from only the plant.

A colour transformation called excessive green (ExG) described in [30]
shows good results without the same stability problems. This method also
has the advantage of being less computationally expensive than HSI.
ExG is de�ned as:

ExG = 2 ·G−R−B (2.1)

The global threshold is found with Otsu's method[35] using the Matlab

build-in function graythresh(). Intensities above the threshold are de�ned
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Segmenting Plants using Colour

(a)HSI: Hue (b)HSI: Saturation (c)HSI: Intensity

(d)Hue (dark and low satu-
rated pixels removed)

(e)Hue shifted around green (f)Gravel removed from im-
age

Figure 2.3: Segmenting green with the HSI colour model.

(a)RGB image. (b)ExG. (c)Threshold using Otsu
thresholding (threshold =
0.1412).

Figure 2.4: Segmenting green using the ExG method with Otsu threshold.

as green.
PlantMaterial = ExG > OtsuThreshold (2.2)

The result of ExG is shown in Figure 2.4.
In [31] a combination of excessive green and excessive red (ExG−ExR)

with a threshold of zero outperforms ExG with Otsu threshold and the
method called Normalized Di�erence Vegetation Index (NDI) with Otsu

7



Chapter 2. Segmentation

threshold.
ExR is de�ned as:

ExR = 1.4 ·R−G (2.3)

The value of 1.4 is de�ned by human perception of colour. �ExR takes into
account relative proportions of rod and cone sensitivity for red and physiolog-
ical green�[36]. Green elements in ExG−ExR are simply de�ned as values
above zero when ExR is subtracted from ExG:

PlantMaterial = ExG− ExR > 0 (2.4)

Figure 2.5a shows a plant sample with a gravel background. Figure 2.5b
and 2.5c show respectively how ExG and ExR highlight green material and
non-green material. Subtracting ExR from ExG provides a natural threshold
around zero as shown in Figure 2.5d and 2.5e. The �nal result in Figure 2.5f
shows a plant without gravel background.

(a)RGB image (b)ExG (c)ExR

(d)ExG-ExR (only showing
positive values)

(e)Positive values are thresh-
olded

(f)Green material without
background

Figure 2.5: Segmenting green using the ExG-ExR method.

Comparison on HSI and Excessive Green-Excessive Red An empir-
ical experimentation was made with HSI, ExG and ExG-ExR all performing
well. Figure 2.6 shows how the green material has been segmented for both
a single plant and a whole image sample from the database by using HSI,
ExG and ExG-ExR. ExG-ExR selects larger areas of green - especially in
the stem area - compared to the two others as seen in 2.6a, 2.6b and 2.6c.
A broader selection of green colours will enhance the detection of the stem,
and thereby make sure that more leaves are connected in joint plants. In
Figure 2.6d, 2.6e and 2.6f it is seen that a single plant more often is divided
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Segmenting Plants using Colour

(a)HSI on single plant (b)ExG using Otsu thresh-
olding on single plant

(c)ExG-ExR on single plant

(d)HSI (e)ExG using Otsu thresh-
olding

(f)ExG-ExR

Figure 2.6: Segmenting green with respectively HSI, ExG and ExG-ExR. The methods
are highly correlated. The di�erence it though notable around the stem
of the plant in Figure (a), (b) and (c). Green segments are marked with a
bounding box in Figure (d), (e) and (f) showing how the ExG-ExR connects
more plant elements into whole plants.

into smaller connected elements by deploying those methods using HSI and
ExG than by using the ExG-ExR method. Each of the three methods are
implemented in Matlab

1.
Based on this simple test, ExG-ExR is chosen as the method to be used for
colour segmentation, as it is better at combining plant elements into whole
plants. However, a more thorough research on the di�erent segmentation ex-
amples is required to fully evaluate the di�erent colour segmentation meth-
ods. That step has been omitted from this study due to the following reasons:

1. Each method must be evaluated with accordance to the ground truth
segmentation. This is a very time consuming procedure as the ground
truth segmentation must be performed manually by hand in a range
of images to show robustness with di�erent types of backgrounds.

1The Matlab script is located in: Matlab/Segmenting/SegmentingTool/

simpleSegmenting.m
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Chapter 2. Segmentation

2. Thorough research has already been performed in [31]; in this study,
ExG-ExR is selected as the optimal method.

2.2.1 The ExG-ExR method

The method of ExG-ExR provides a good solution for robustly segment-
ing green material. An improvement of the method is therefore not an urgent
lack of the whole system. However, the following analysis will provide an
exploration of colour segmentation in general, and, more speci�cally, it shall
examine the constants used in ExG-ExR as well as the ExG and ExR con-
stants. The expression of ExG-ExR can easily be simpli�ed into only one
expression containing a factor of the R, G and B component.

ExG− ExR = 2G−R−B − (1.4R−G) = −2.4R+ 3G−B (2.5)

This expression can be rewritten to a more general form

yGreyScaleImage = r ·R+ g ·G+ b ·B, (2.6)

or as the inner product of the colour vector xrgb and the �xed weighting
vector w

yGreyScale =

 R
G
B

T ·
 r
g
b

 = xTrgb ·w, (2.7)

where xrgb =

 R
G
B

 and w =

 r
g
b

.
The equation describes a whole branch of colour segmentation methods that
extracts a colour by only using a linear combination of the R, G and B
components. In other words, the w vector projects the RGB values onto a
line. A threshold on that line can now be used to separate foreground and
background. The vectors for ExG, ExR and ExG-ExR are shown below:

wExG =

 r = −1
g = 2
b = −1

, wExR =

 r = 1.4
g = −1
b = 0

, wExG−ExR =

 r = −2.4
g = 3
b = −1

In Figure 2.7 the vectors of ExG, ExR and ExG-ExR are shown in an RGB
colour space. If all colours in the RGB colour space are projected onto
the ExG vector, green colours will have a high value, while colours on the
opposite side of the colour cube (magenta) will have low values. Adding
a threshold will segment green colours while removing other colours in the
image; especially magenta. On the other hand, the ExR method will result
in high values around red colours and low values around cyan. The ExG-
ExR vector is comparable to the ExG vector, but it will more aggressively
remove the colour red.
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The ExG-ExR method

Figure 2.7: Lines showing the ExG, ExR and ExG-ExR

This project will present and investigate three colour segmentation meth-
ods that determine a vector w like those of ExG, ExR and ExG-ExR, but
modi�ed to segment colour for a given data set in an optimal way. The
�rst method is presented in the project to demonstrate the main idea of the
three methods, the two others can be found in Appendix A. The advantage
of the three methods is that they allow for adjustments to be made to the
colour, that is to be segmented, and they can be used for other colours than
green. Each method requires an RGB image and a binary mask of a de-
sired segmentation. The desired elements in the image are de�ned as the
foreground and must - like leaves - have a distinct colour. The undesired
elements are de�ned as the background. The desired segmentation is made
manually by hand and is de�ned as the optimal segmentation mask (OSM).
An optimization problem can now be set up by using the OSM to �nd the
optimal linear combination w of R, G, and B that best separates the fore-
and background of the image. The w vector can either be determined on
behalf of one image or a set of images presenting a broad spectrum of the
possible images that are to be recorded for an automated system.

The �rst approach uses linear regression and de�nes the cost function
below. The RGB image is of dimensions m × n × 3 and the OSM is image
of the dimensions m× n× 1.

J (r, g, b) = ‖r ·R + g ·G + b ·B−OSM‖2 =

∥∥∥∥∥∥∥
 R

G
B

T  r
g
b

−OSM

∥∥∥∥∥∥∥
2

(2.8)
The RGB image is reshaped to a 2D vector with three rows for R, G and B,
respectively, and a column for each of them·n pixels in the image. The OSM
mask is reshaped to OSM, a 1d vector of the length m ·n. The problem is a
set of linear equations (one for each pixel) that forms a classical linear least
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squares problem
‖A · x− b‖2 (2.9)

The solution to x is:
x =

(
ATA

)−1
ATb (2.10)

Where

A =



R1,1 G1,1 B1,1

R2,1 G2,1 B2,1

...
...

...
Rm,1 Gm,1 Bm,1
R1,2 G1,2 B1,2

...
...

...
Rm,n Gm,n Bm,n


, x =

 r
g
b

 , b =



OSM1,1

OSM2,1

...
OSMm,1

OSM1,2

...
OSMm,n


(2.11)

The method is used on an RGB image as shown in Figure 2.8a. The image
is hand segmented to achieve the OSM mask in Figure 2.8b. In the linear
approach the OSM mask is set to 1 in the desired segments and set to −1
in undesired segments. The least square solution of r, g and b is found to
be2 −2.4, 3.22 and −1.36 comparable to ExG-ExR values of −2.4, 3 and −1.
The greyscale image showing green is made with Eq. 2.6, see Figure 2.8c.
Finally the image is thresholded around 0, which results in 2.8d.

(a)RGB image (b)Optimal seg-
mented mask,
OSM.

(c)The optimal com-
bination of r, g,
and b.

(d)The segmented
mask.

Figure 2.8: The procedure of the linear approach.

The result is comparable to the result given by ExG-ExR. The advantage
of this procedure - as with the 2 other methods - is that a narrow or broader
colour criteria can be set depended on what colour is being selected in the
OSM. In Figure 2.9a, an RGB image of a colour spectrum is shown. A
narrow green area is now selected from the colour spectrum to be used as
OSM, see Figure 2.9b. The segmentation di�erence between the new method
and ExG-ExR can easily be seen in Figure 2.9c and Figure 2.9d, respectively.

Additionally, the procedure allows the user to adjust how strictly the
colour segmentation is performed by adjusting the OSM by multiplying a

2values are scaled to make r = −2.4 like in ExG-ExR
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(a)RGB image (b)Optimal seg-
mented mask,
OSM

(c)Result of new
method.

(d)Result of ExG-
ExR.

Figure 2.9: The result of the new colour segmentation method.

(a)Optimal seg-
mented mask,
OSM.

(b)Weight = 1. (c)Weight = 10. (d)Weight = 50.

Figure 2.10: The dependency of weight.

factor to the desired segments. Figure 2.10 shows the segmented area with
di�erent weights. The procedure is implemented in Matlab

3.
The second colour segmentation method also uses a cost function which

is related to the �rst method, it introduces a threshold in Eq. 2.8 for values
larger than 0, which are set to 1, and othervise are set to 0, which provides
a more correct solution

J (r, g, b) =

∥∥∥∥∥∥∥

 R

G
B

T  r
g
b

 > 0

−OSM

∥∥∥∥∥∥∥
2

(2.12)

But, the equation becomes non-linear, making it hard (if not impossible)
to solve analytically, and the problem must be solved using a numerical op-
timization method.

3The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/NewColorSegment/Test2ColorMethods.m
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The �nal colour segmentation implementation uses the Fishers Linear
Discriminant method to likewise determine the r, g and b component, but
also adds a threshold value adding an extra degree of freedom.
The two methods are described in more details in Appendix A.

The �rst colour segmentation method is computational e�cient, but the
cost function optimizes towards the OSM without including a threshold and
therefore only provides an approximation. However, this adds a freedom
to the method allowing the user to de�ne how strict a colour must be seg-
mented. The second method includes a threshold in the cost function and
de�nes a more mathematically correct segmentation, but as the solution can
not be solved analytically, the solution is found through a seemingly com-
putationally insensitive numerical optimization. The third approach adds
a dynamic threshold adding extra freedom to the expression, it is compu-
tational e�cient and determines the optimal projection of the RGB colour
space for a discrimination of the fore- and background.

2.3. Segmenting Leaves

One of the aims in this project is to compare how easy plants species can
be determined from the appearance of whole plants as well as the appearance
of their leaves. In this section, two methods for leaf segmentation will be
tested; a method that segments leaves using fuzzy clustering by looking at
pixel distances and colour information of the leaf and a method that segments
leaves based on changes in the curvature of the plant.

2.3.1 Segmenting Leaves - Fuzzy Clustering of leaves

This section describes the implementation and an algorithm for extract-
ing individual �good� leaves from images of plants with multiple leaves. The
method is based on [37] in which the pixels of the plant are �rst divided into
small clusters using the Gustafson-Kessel C-means method and afterwards,
they are grouped in individual, good leaves using a genetic algorithm.

2.3.1.1 Plant Clustering

The clusters, which the pixels of the plant are divided into, are based
upon the colour information and the spatial location of the pixels. The colour
information could for instance be the RGB, HSI or the ExG−ExR-values.
The drawback of using RGB or HSI is that they increase the computational
complexity because of the three colour-channels instead of just one. A test
and comparison of the clustering for di�erent colour spaces are presented in
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Plant Clustering

Section 2.3.1.3.
The notation in this section will be based on RGB-values, but for other

colour-spaces, it should just be replaced with the respective colour. For a
plant containing N pixels a data matrix, XN×5, is constructed in which each
row consists of the processed colour (red, green, blue) and (row,column)-
coordinates of each pixel within the plant.

X =

 R1 G1 B1 r1 c1
...

...
...

...
...

RN GN BN rN cN


To create the clusters, two methods have been tried out. One is the Fuzzy

C-Means (FCM) algorithm and the other is the Fuzzy C-Means algorithm
with the Gustafson-Kessel extension.

First the k-means algorithm is introduced, as it is the basis of the fuzzy
C-means. The k-means algorithm is a hard assignment algorithm, in which
pixels are labelled according to the minimum distances to a cluster-�mean�
in a feature space consisting of pixel intensities and pixel coordinates. A
clustering method based on k-means is described in [38, p. 415].
The two fuzzy algorithms shall be seen in contrast to this k-means algorithm,
as each feature vector, xn, is not only assigned to one cluster, but have a
degree of membership to all clusters depending on the distances to the means
of the clusters [39]. The higher membership-value, uin, the larger association
does xn have to cluster i.

Fuzzy C-Means (FCM) In FCM, this membership is found by minimiz-
ing the cost function JFCM , which is the sum of the distances from all data
xn to the cluster centers vi, multiplied with the corresponding degree of
membership uin of xn to cluster i.

JFCM =

C∑
i=1

N∑
n=1

uminDin (2.13)

where Din is the Euclidean distance de�ned by

Din = ‖xn − vi‖2 (2.14)

and C is the desired number of clusters. In the k-means algorithm each
sample will be assigned to only one cluster, whereby you could say that
the sum of all membership assignments uin for a feature vector xn should
be 1. i.e.

∑N
i=1 uin = 1. In the fuzzy C-means algorithm, this is not the

case, which is the reason why the exponent m is introduced. m determines
how much weight are given to the nearest means, and thus it controls the
�fuzziness� of the clusters. m can take values from 1 to ∞ [40]. The cluster
centres are calculated as the weighted mean of X.
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vi =

N∑
n=1

uminX

N∑
n=1

umin

, (2.15)

and the elements of the membership matrix U = [uin] is found by using
lagrange multipliers with the constraint that 0 ≤ uin ≤ 1 and

∑
i

uin = 1

whereby it can be calculated as [41]:

uin =
1

C∑
l=1

(
‖xn−vi‖
‖xn−vl‖

) 2
m−1

(2.16)

The optimal cluster means and relationships are calculated through an
iterative process, which continues until the change of the relationship matrix
is su�ciently small [40].

Figure 2.11a shows an example of the performance of the FCM algo-
rithm on two di�erent, Gaussian distributions, calculated using the fuzzy
exponent m = 2.0. It should be noticed that the �tted clusters are identical,
even though the data distributions are di�erent from each other. Figure
2.11b shows the performance of the algorithm on a plant preprocessed with
ExG-ExR, still with m = 2.0. This time the algorithm is set to �nd six
clusters, and each pixel is labelled according to the nearest cluster4. As can
be seen from the two �gures, the clusters are spherical, which means that
the performance will be even worse, if the axis are not normalized to each
other, such that the colour and coordinates have the same range.

Gustafson-Kessel FCM (GK-FCM) As the FCM cost function (2.13)
is minimized by minimizing the Euclidean distance between xn and vi, the
clusters will move towards a spherical shapes [39] with identical volumes.
The Gustafson-Kessel extension compensates from this disadvantage by us-
ing a modi�ed version of the Euclidean distance that is based on the covari-
ance matrix of each cluster. With this extension ellipsoidal clusters can be
built instead of only simple, spherical clusters [42], and di�erent geometrical
shapes in the data set can therefore be detected. This also means that the
scaling of the axis is less important.

The cost function of the Gustafson-Kessel algorithm is de�ned in the
same way as the cost function (2.13) from FCM.

JGK =

C∑
i=1

N∑
n=1

uminDinAi
(2.17)

4Matlab code for the test can be found in Matlab/IndividualLeafExtraction/

DemoafFCMogGK-FCM/testafFCMGK.m
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(a)Data�tting for random samples with
the FCM algorithm, showing that the
FCM algorithm �nds the best spheri-
cal clusters for the data set.

(b)Data�tting with the FCM algorithm
on sugar beet plant.

Figure 2.11: FCM performance on two random clusters and leaf a plant.

What Gustafson-Kessel changed was the distance function from xn to
vi, which now is given by:

D2
inAi

= (xn − vi)
T
Ai (xn − vi) , (2.18)

where Ai are variables used to make the clusters adapt to the given dataset.
In the FCM distance function (2.14), Ai is simply the identity matrix. How-
ever, this could be changed to use the Mahalanobis norm, and thereby make
the clusters hyper-ellipsoidal instead of spherical. Yet all clusters will still
have the same shape [40, pp. 69].

In the Gustafson-Kessel algorithm, the aim still is to minimize the cost
function. However, as the cost function (2.17) is linear in Ai, it is necessary
to constrain Ai, which is done by constraining the determinant of Ai [41].
The determinant of a diagonal matrix is simply the product of the entries
on the diagonal, which have to be held constant and non-zero. The reason
for doing this is that it will allow di�erent scaling in each direction in the
feature space, but without letting the distance measure grow unbounded.
The determinant of Ai is called ρi

|Ai| = ρi, ρi > 0, ∀i (2.19)

Where ρi is �xed for each i.
Such a constrained minimization problem is solved using Lagrange mul-

tipliers whereby Ai can be expressed as[41]:

Ai = (ρi · |Σi|)1/d
Σ−1
i , (2.20)
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(a)GK-FCM performance on two random
clusters, showing that the algorithm
adapt to the shape of the clusters.

(b)GK-FCM performance on on a sugar
beet plant.

Figure 2.12: Data �tting for the GK-FCM algorithm, showing that the GK-FCM al-
gorithm are better at �tting the clusters to the data sets than the FCM
algorithm, shown in Figure 2.11.

where d is the dimension of the feature space. Figure 2.12 shows how the
Gustafson-Kessel extension performs on the same data set, as used in 2.11.
It should be noticed that the two clusters are �tted much better to the data
sets than in the standard FCM algorithm. The Matlab implementation5 is
based on [43].

After the plant has been segmented, the segments, which belong to the
same cluster, but are not spatially connected, are given di�erent labels and
are thereby considered new, independent segments. By doing this, edges are
indirectly taken into account, as edges typically will be independent clusters
because of their di�erent colours, which divides other clusters in two.
After this processing, the image is �ltered using a 3 × 3-median �lter, to
remove the segments consisting of only few pixels.

2.3.1.2 Cluster combination using the genetic algorithm

The idea of the cluster combination is to combine the clusters in whole,
good leaves. To do this, the genetic algorithm is used.
The genetic algorithm is a global optimization algorithm, in which di�erent
cluster combinations are tried out, and the ones having the best �tness, i.e.
provides the best results, have a higher probability of surviving to the next

5Matlab code for the test can be found in
Matlab/IndividualLeafExtraction/DemoafFCMogGK-FCM/testafFCMGK.m
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iteration of the algorithm6.
The �rst part of the algorithm is the creation of a set of chromosomes.

One chromosome is a vector representing a possible combination of segments
to form a leaf and is constructed as follows7:

1. A symmetric matrix C with height and width equal to the number of
labels is constructed as a look-up table of connected segments. Each
row represent a segment, as does the columns. The entry at the inter-
section is then set to 1, if the segments represented by the row/column
are neighbour segments, and set to 0 if they are not.

2. A random segment with an area larger than the average segment area
is chosen as the root of the chromosome (=�rst entry of the vector).

3. A random neighbouring segment to the root segment is chosen for the
second entry of the vector.

4. The third entry is then a random neighbouring segment to the segment
from the second entry and so on...

The principle is illustrated in Figure 2.13, in which a chromosome consisting
of �ve levels is constructed.

2

1

3

2

4

root

(a)A possible, �ve-level chromosome (b)Segmented and labelled sugar beet plant

Figure 2.13: Example on how a �ve-level chromosome could be made from a segmented
leaf. Each level of the chromosome must be connected to the previous level
of the chromosome

6The Matlab script is located in:
Matlab/IndividualLeafExtraction/geneticalgorithm.m

7The Matlab script is located in:
Matlab/IndividualLeafExtraction/connectedRegions.m
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There are no upper bound of the number of chromosomes and the length
of the chromosomes, but the more chromosomes, and the longer they are,
the more computational power is required to �nd the optimal ones. Still the
required length of the chromosomes are strongly related to the number of
segments that makes up the leaf, as the length has to be at least as long
as the number of segments. For convenience the population of chromosomes
for iteration i is called P (i).
When the �rst chromosomes have been constructed, the algorithm starts
an iterative process, which goes as shown in algorithm 1. The idea in this
algorithm is to continuously build new populations of chromosomes that are
based upon the strongest chromosomes from the last iteration. I.e. the
chromosomes that makes up the best leaves. To make sure that the algo-
rithm does not get stuck in a local minimum, mutation and cross-over of the
chromosomes introduces new chromosomes that could help avoiding such a
situation.

Algorithm 1: Genetic algorithm

for i← 1 to Niter do
[Calculate �tness]: foreach chromosome pn in P (i) do
calcFitness(pn);
[Mating pool]: Create mating pool M (i) with chromosomes
from P (i), the higher �tness of pn, the larger probability of being
selected to M (i);
[Crossover]: Repeatedly take out two parent chromosomes from
M (i), and with a crossover probability cross over the two
chromosomes to form two o�spring to put back in M (i). If no
crossover was performed, the o�spring will be an exact copy of the
parents;
[Mutation]: foreach chromosome pn in M (i): with a mutation
probability, change entries in pn to random segments.
[New population]: P (i+ 1) = M (i)

end

As the segments, that make up one leaf, have to be connected, a con-
straint for the crossover has been made to form whole leaves. It says that the
crossover point has to be at a place that do not violate the initial structure
of the chromosomes, in which the entries represent neighbouring segments.
The �tness of the chromosomes is calculated using Regionprops-solidity in
Matlab. This calculates the fraction of the area of the segments divided by
the convex area of the segments as illustrated in Figure 2.14.

With this objective for at good leaf, it is also clear that some leaves
will be discarded, if they bow or have indented margins like, for instance a
stinging nettle leaf.
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Figure 2.14: The �tness parame-
ter is calculated as
Areablue/Areared

When a good leaf has been found, it is removed from the image, and the
algorithm starts over to �nd the second-best leaf. Area and solidity are used
as stopping criteria for the algorithm, so that if only a small fraction of the
original area is left or the best leaf in the remaining image has a low solidity,
the algorithm stops.

2.3.1.3 Test of Gustafson-Kessel algorithm performance on differ-
ent, preprocessed images

In this section, the performance of the algorithm will be tested for di�er-
ent colour inputs8. In the initial plant segmentation in Section 2.2, ExG-ExR
has proven to be a good feature to segment the plant from the soil. This
test will show, if this also is a good feature for the Gustafson-Kessel FCM
algorithm, where clusters are based on the colour information, too.
In addition to this, six other colour spaces will be tested as well, so that
input images based on the following colour spaces are tested:

• RGB

• ExG-ExR

• Greyscale

• Hue-Saturation-Intensity (HSI)

• Histogram equalized RGB

• First principal component of RGB (PCA)

As seen from Figure 2.15, the segmentation based on ExG-ExR (b)(h)
is the one that performs the worst. This can be seen in the area with the
overlapping leaves, where it makes clusters that overlap leaf margins. The
clusters from RGB (a)(g) and greyscale (c)(i) images are both able to make
clusters that follow the leaf margins, but both also have edges that they miss.
It is also seen that the greyscale-based segmentation only have few segments

8The Matlab script is located in:
Matlab/IndividualLeafExtraction/IndividualLeafExtraction.m
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compared to the others, which will reduce the complexity of �nding the
optimal combination of clusters.

The clustering based on HSI (d)(j) seems to perform evenly good as the
greyscale-based clusters regarding edges between leaves, though, it is noisy
and the hue channel of the HSI image does not seem to add much to the
clustering result and could therefore be omitted.

Figure 2.15e shows an RGB image that has been histogram equalized
for all three colour channels. The reason for doing this is to utilize the full,
dynamic spectrum and thereby push unrelated segments further apart before
doing the clustering. From this segmented image (k), it is seen that the
segments do not overlap leaf margins between the leaves. But the segments
are very scattered in areas that appear �at in the RGB image, which will
make the further processing even heavier, without adding useful information.
The last test is made using principal component analysis (PCA) of the RGB
image (f) (l), and use the Gustafson-Kessel algorithm on only the largest
principal component. The purpose of using the largest principal component
is that it will keep most of the variation of the colours, while only being
having one colour channel. The result from this is very comparable to the
others when �nding leaf margins, but it also seem to be slightly better at
�nding the venation (skeleton) of the leaves. An explanation of Principal
Component Analysis can be found in Appendix B. Based on this test, the
greyscale and the �rst principal component input inputs seems to provide
the best clustering for the given leaf.

2.3.1.4 Test of “Fuzzy Clustering of leaves”-algorithn

As stated earlier, this algorithm has solidity as the measure for a good
leaf. This measure helps removing leaves that are odd oriented relative to
the camera, or leaves that often bows. The algorithm is therefore not ex-
pected to perform well in these cases.
For all tests, the Gustafson-Kessel algorithm has been used to create the
clusters, which have been combined using the genetic algorithm. Both the
Gustafson-Kessel algorithm and the Genetic algorithm are computationally
intensive algorithms, which are not suited for real-time implementation with-
out some optimization. E.g. GPU implementation. Especially the Genetic
algorithm is computationally intensive, as it requires an image to be gener-
ated to measure the solidity, which are done several times for each iteration.
For instance an implementation with 80 chromosomes and 200 iterations
requires 80× 200 = 16000 images to be generated!

Therefore, to save computational power, the numbers of clusters and
iterations are changed depending on the test.
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Test of �Fuzzy Clustering of leaves�-algorithn

(a)RGB input. (b)ExG-ExR
input.

(c)Greyscale
input.

(d)HSI input. (e)Histogram
equalized
input.

(f)First principal
component in-
put.

(g)RGB
segmentation.

(h)ExG-ExR
segmentation.

(i)Greyscale
segmentation.

(j)HSI
segmentation.

(k)Histogram
equalized
segmentation.

(l)First principal
component
segmentation.

Figure 2.15: Example on the di�erence in segmentation of the Gustafson-Kessel algo-
rithm for six kinds of input.

Round leaf with small overlap In this test, chickweed is used as input.
The GK-FCM algorithm is set to have a fuzzy exponent of 2.0 and to �nd
15 clusters. The genetic algorithm has been set to have 80 chromosomes and
to do 200 iterations for each leaf9. The result can be seen in Figure 2.16.
What should be noticed is that all, four leaves are segmented even though
two of the four leaves are overlapping each other.

Overlapping leaves An example of the ability to segment overlapping
leaves is shown in Figure 2.17. This example shows a constructed image of
two overlapping sugar beet leaves, where the upper leaf is segmented, and
the two parts making up the lower leaf are segmented as well. It should be
noticed that the leaf in the upper right corner miss the part close to the stem,
which is one of the consequences of the �tness measure in this algorithm.
This is because the dark, green area in the clustered image will add a large
concave hull, which will result in a low solidity. In addition to that, small
holes appear in the leaves, which probably are due to their small impact on
the solidity measure.

9The Matlab script is located in: Matlab/IndividualLeafExtraction/

IndividualLeafExtraction.m
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(a)RGB input. (b)Segmented and labelled
plant.

(c)Best �good� leaf.

(d)Second best �good� leaf. (e)Third best �good� leaf. (f)Fourth best �good� leaf.

Figure 2.16: Example on the performance of algorithm on chickweed (Stellaria media).

For this test, only the area of the remaining plant, has been used a stop-
ping criteria, so that it is possible to see the order in which the algorithm
categorizes good leaves.

2.3.2 Segmenting Leaves - The PSEP algorithm

Another method for �nding leaves uses the general contour of the plant
rather than the surface of it. The method is based on an algorithm called
Plant Stem Emerging Point(PSEP)[44], which - as the title says - �nds the
stem emerging point of the plant. This project is not concerned with �nding
the stem point, but the initial steps in the algorithm involve extracting leaves
from the plant. The leaf extraction exploits that the general shape of a plant
consists of convex regions, i.e. the leaves of the plant, that are joint together
by a thin stem to form the whole plant.
Leaf extraction consists of three steps:

1. Extract the boundary of the plant mask. Make a sorted coordinate list
of points from the boundary running in a clockwise direction.

2. Find leaf tip candidates by determining the most convex regions of the
plant.

3. Find leaf cut. A search is begun from each leaf tip candidate to validate
a leaf tip and to cut leaf from plant.
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Extract boundary in a sorted list

(a)RGB input. (b)Segmented and
labelled plant.

(c)Best �good� leaf. (d)Second best
�good� leaf.

(e)Third best �good�
leaf.

(f)Fourth best
�good� leaf.

(g)Fifth best �good�
leaf.

Figure 2.17: Example on the performance of algorithm on overlapping sugar beet leaves.

2.3.2.1 Extract boundary in a sorted list

The input of the algorithm is a binary mask of the plant as shown in
Figure 2.18b. The contour is determined as a list of points running clockwise
around the boundary. The boundary is shown in Figure 2.18c. A procedure
has been implemented in Matlab

10 as described in Appendix D but a built-
in Matlab function bwtraceboundary() provides the same functionality and
is therefore used instead.

2.3.2.2 Leaf tip candidates

Leaf tip candidates are found by �nding the curvature/change of direction
around the boundary also known as the second derivative of the boundary.
The sign of the curvature describes whether the leaf is concave (positive

10The Matlab script is located in:
Matlab/Segmenting/PSEP/PSEP_SortedEdgeList.m
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(a)RGB image (b)Plant binary mask (c)Plant boundary

Figure 2.18: Shows the RGB image, the binary mask and the extracted boundary of
the plant.

Convex region
& local minima

Concave region
& local maxima

Leaf tip

Figure 2.19: Convex and concave regions. Leaf tip candidates are de�ned as local min-
ima of the curvature.

values) or convex (negative values). Leaf tip candidates are points of high
convexity and are de�ned as local minima in the curvature, as illustrated in
Figure 2.19. The n boundary pixels are sorted in a list of coordinates zk
where k ∈ [1, . . . , n] running in the clockwise direction around the boundary
as described in [44]. An estimate of the second derivative of the boundary,
de�ned as an estimate of the curvature, is determined. Firstly the list of
coordinates is �ltered individually over the x and y coordinates using a
moving average �lter with a size of m = 31 (m = 5 in [44]), as shown in
Figure 2.20b. Finally, the curvature for each of the k in the coordinate list
zk is de�ned as the angle between the line that connects point zk−∆ to point
zk and the line that connects point zk and point zk+∆ [44], as illustrated
in Figure 2.20c. The value ∆ is set to 24 (∆ = 12 in [44]). A function has
been implemented in Matlab

11 to calculate the curvature. The Matlab

implementation adds additional ∆+m points in the beginning and in the end
of the sorted coordinate list to allow the algorithm to calculate the curvature

11The Matlab script is located in:
Matlab/Segmenting/PSEP/PSEP_filterEdge.m
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(a)Boundary image. (b)Filtered boundary image.

ew
fgs

k-Δ 

k

k+Δ 

angle

(c)Determining the
curvature.

Figure 2.20: De�nition of curvature.

in the �rst point z1 and in the last point zn.

The curvature for the given sample is shown for each k in Figure 2.21a.
The leaf tip candidates are determined by �nding locale minima, which is
handled in three steps [44]. The �rst step divides the curvature in concave
and convex regions by looking at the sign of the curvature as described in
[44]. A small adjustment (which was not mentioned in the original article)
consists of doing an up shift and a left/right-shift of the curvature as shown
in Figure 2.21b, where the previous origin is illustrated by two red, dashed
lines.

The up-shifting of the curvature is made by subtracting the mean value
of the whole curvature to compensate for the fact that a closed shape will
always be more concave than convex. The left/right-shift is made to avoid
splitting a convex region in two, either at the beginning or at the end of
the plot. Convex and concave regions are determined from the adjusted
curvature in order to �nd candidate leaf tips. In step two, the minimum of
the curvature is determined for each convex area by �nding the most convex
point within the convex region. In Figure 2.21c the blue colour along the
x-axis marks convex regions, while concave regions are marked in red. The
local minima are marked by pink circles. The third step simply performs
thresholding by removing minima with a change of direction less than 0.5
radians (1 radian is used in [44]). In Figure 2.21d the local minima is marked
on the boundary with a cross or circle. A circle indicates that a local minima
is elected as a leaf tip candidate.
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(a)Curvature of the boundary. (b)Adjusted curvature by a horizontal and
vertical shift. The shifting from Figure
(a) is illustrated by marking the shifted
origin by the crossing of the two dashed
red lines.

(c)Shows convex areas blue and concave
areas marked with red. Local minima
marked with pink circle.

Shows all convex (x) and all max convex (o) 

(d)Shows the local minima marked
with circle/cross or leaf tip can-
didates marked with circle.

Figure 2.21: Show the curvature and the adjusted curvature by an up- and vertical-shift.

2.3.2.3 Finding leaf cut

In the last step, a search is performed from each leaf tip candidate po-
sition by sending out two walkers around the boundary. One walker is sent
in a clockwise and the other in a counter clockwise direction as illustrated
in Figure 2.22. Every time a walker has moved a Euclidean distance of tth
away from the leaf tip candidate, the two walkers will measure the distance
between them as shown in Figure 2.23a. The walkers are implemented as
a state machine running in only two states. Initially the walkers are set in
a leaf-tip state measuring the distance between them and keeping track of
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Finding leaf cut

ws all convex (x) and all max convex (o) Edge image + starting point
CW walker

CCW walker

Leaf tip

Figure 2.22: The walkers are sent in a clockwise and counter clockwise direction.

Showing distance between walkers

Leaf-stem
state

Leaf tip 
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(a)Shows convex and concave areas
and the local minima.
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(b)Shows the local minima or leaf tip can-
didates.

Figure 2.23: Shows the di�erent states of the walkers.

the maximum distance as they walk along the boundary. When the walkers
measure a distance of 75% (50% is used in [44]) of the maximum distance
that they have measured along their way, the state will change to a leaf-stem
state. In the leaf-stem state, the walker continues to measure distance, but
will now keep track of the minimum distance. When the current distance
exceeds the minimum distance by 250% (300% is used in [44]) the procedure
will enter the successfully-terminated state, and the leaf will be cut at the
point of the smallest distance recorded in the leaf-stem state. In Figure 2.23a
and 2.23b the leaf tip is marked with a red ◦, the changing of leaf-tip to leaf-
stem state is marked with a green ◦, and the leaf is cut between the red ×'s
after which it can be extracted from the plant.

A leaf tip candidate, that is not actually a leaf tip, will often not enter the
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Showing distance between walkers Showing distance between walkers Showing distance between walkers Showing distance between walkersNo cut Cut Cut Cut

CutCutCutCut

(a)All cuts.

(b)All cuts and leaf tip can-
didates.

(c)Leaf tip candidates selects
pieces to remake plant.

(d)Cuts are removed and
connecting leaves.

Figure 2.24: Show how all the cuts removes away the stem only leaving non-connected
leaves back.

two states and therefore will not end in the successfully-terminated state.
In this way invalid leaf tip candidates are removed and cuts are avoided.
In opposition to the original paper, the walkers are not terminated when
passing another leaf tip candidate. This termination state has been removed
to allow foliage leaves, such as those shown in the �gure above to be extracted
as they contain multiple leaf tip candidates.

The cotyledons will be extracted as in the original paper. Yet, in this
case, the idea is to let the foliage leaf perform multiple cuts and thereby
actually cutting the foliage leaf and the whole plant into multiple pieces as
shown in Figure 2.24a.

Some of these pieces are now selected by all valid leaf tip candidates to
create a new plant, but as no leaf tip candidates are found in the stem, the
stem is removed from the new plant leaving behind only leaves as shown in
Figure 2.24b and 2.24c. The divided parts are now reconnected by reinsert-
ing cuts that connect the foliage leaves as shown in 2.24d.

30



Comparison of the �Fuzzy Clustering of leaves�-algorithm and the �PSEP�-algorithm'

Using this method produces good results on small plants having up to
4-leaves, but the robustness will fall rapidly for plants with more leaves, as
they tend to overlap. In comparison with the procedure that was originally
thought out in the article, leaves with multiple potential leaf tips (such as
foliage leaves) will not be found (as foliage leaves). However, the robustness
of the algorithm proposed in this project is lower as also invalid leaves or
plant sections might be added.

Two examples of typical faulty leaf extractions are now presented: Figure
2.25 shows a plant at a very low growth stage. The boundary and the leaf
tip candidate points are found, but walkers will never enter the successfully-
terminated state, as the leaves are too slim compared to the stem, and the
PSEP fails to extract the leaves of the plant.

(a)RGB image of
plant.

(b)Filtered boundary
and leaf tip candi-
dates.

(c)No cuts are made.

Figure 2.25: An example of the PSEP not successfully extracting leaves.

In Figure 2.26 a plant of a higher growth stage is presented. The bound-
ary and leaf tip candidate points are found, and the walkers will provide
di�erent cuts to the plant. A plant of a higher growth stage will contain
many leaves, and the walkers will therefore produce many cuts and thereby
increasing the risk of creating invalid leaves leaves as those in Figure 2.26e
and 2.26f. A manual procedure is therefore included to validate all leaves
before they are included in the dataset.

2.3.3 Comparison of the “Fuzzy Clustering of leaves”-algorithm
and the “PSEP”-algorithm’

As seen from the tests above, there are three areas where the two leaf-
segmenting methods di�er from each other. These three areas are:

• Segmentation of leaves with low solidity.

• Segmentation of overlapping leaves.
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(a)RGB image of plant. (b)Boundary and leaf tip
candidate points.

(c)Mask showing the dif-
ferent cuts performed by
the walkers.

(d)Leaf 1.

(e)Leaf 2. (f)Leaf 3. (g)Leaf 4. (h)Leaf 5.

Figure 2.26

• Computational cost.

Both algorithms are quite good at segmenting round, convex leaves, but
when it comes to leaves with low solidity, the clustering based -algorithm
fails, due to its preference for convex leaves. One the other hand, the PSEP
based -algorithm requires that all leaves are non-overlapping for it to be able
to handle them. The PSEP-algorithm in the form described in [44] prefers
convex leaves as well, but with the described modi�cations it is now able to
handle non-round leaves like the scentless mayweed foliages that are shown
in Figure 2.24.
Another not negligible detail is the computational cost of the two algorithms.
While the PSEP-algorithm is working on one image the whole time, the In-
dividual leaf extractions-algorithm has to create images over and over again
in order to measure the �tness of the chromosomes that make up the leaves.
For this reason, the clustering based-algorithm is not suitable for a real-time
implementation, but could be used in an o�ine application for weed mixture
estimation.
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Leaf Straightening

2.4. Leaf Straightening

In this section, a method to �straighten� or �normalize� leaves will be
described. The problem with leaves is that they are soft and non-rigid,
which leads to big variations in the appearance of leaves in the images.

The bigger variation in the appearance, the harder the classi�cation pro-
cess will be leading to more classi�cation errors.

Thus, it is desirable to remove some of this variation and only keep
the general shape information, by estimating the �straightened� leaf. A
warping is then performed with the purpose of removing the bend of the
leaf, thereby achieving the same shape of a pressed leaf or the image of a
leaf in a photocopier.

When doing this, it should be remembered that information is also re-
moved. For instance it might be that some species have a larger tendency of
bending than others, which would be a feature that is removed in the process.

In the case where the plant species is known beforehand, the shape of
the leaf can be parametrized and straightened using active shape models as
described in [45]. However, this is not possible, as the straightening process
is used as a step in actually �nding the species. Therefore, the method has
to be generally applicable, which means that no prior knowledge about the
leaf species can be used. This also means that there will be no ideal leaf
for comparison and all information therefore have to be extracted from the
single image.
The process of estimating the leaf structure could be eased, or could at least
give a more precise result by having a 3D structure of the leaf. Such a struc-
ture is not accessible in the database, but in future applications, the structure
could be achieved in multiple ways. For instance, by using structure-from-
motion by taking the images from a moving vehicle or by simply using a
stereo-camera. For some shiny leaves, the leaf-structure is seen in that way
that re�ections from the camera �ash appear in the surface, almost perpen-
dicular to the lens, but still the exact bending cannot be extracted from this
re�ection alone, as the amount of re�ection depends on the shininess of the
leaves.

To straighten the leaf, it is assumed that the centre vein of the straight-
ened leaf forms a straight line and that the leaf is symmetrically shaped
around this line.

The method described below requires that the leaf shape only has one
edge that is perpendicular to the centre vein of the leaf, as shown in Fig-
ure 2.27

The �rst step in straightening the leaf is to �nd the two end-points of the
leaf, which is done to separate the leaf-curvature on both sides of the leaf.
The process of �nding these endpoints is similar to the method described
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(a)Bad leaf shape for
straightening

(b)Good leaf shape for
straightening

Figure 2.27: Good and bad leaf shapes for straightening using this method

in Section 2.3.2.2, where the two largest peaks indicate the end-points as
illustrated in Figure 2.28a. When the end points have been found, each side
of the leaf is divided into small sections. This is done by sampling �x-points
on each side of the leaf which, because of the symmetric assumption, come
in pairs that are placed on each side of the leaf. Again, because of the sym-
metric assumption, the line between these pairs will be orthogonal to the
centre vein of the straightened leaf.

Because of the perspective of the leaf, the sampled �x-points cannot be
assumed to be equidistant. However, at the moment, the �x points will
be treated in this way, as the real, projected distances are unknown. An
example, of such a sampled leaf can be seen in Figure 2.28b, where the leaf
have been sampled 10 times on each side.
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−0.5

0

0.5

1

1.5

2

2.5

(a)Curvature of the leaf. The endpoints
is marked with red triangles

(b)Equidistant sampling. The estimated
centre vein is marked with red crosses

Figure 2.28: Finding tip-points and sampling points on the leaf

The next process is to estimate the centre line of the leaf. This is done
in order to give a better estimation of the curvature and width of the leaf as
the vein is assumed to be a straight line in the middle of the leaf.
To �nd the centre vein a line search is done on the line between each pair
of samples. This line is made as a 100 points bicubic interpolation of the
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pixels between the two sample points and the aim now is to �nd extrema
corresponding to veins. A problem arises when the centre vein is unclear
and covered in noise, which is shown in Figure 2.29c, where multiple points
candidates to be the top point. A method to remove the noise while keeping
the vein is to use total variation denoising, which is described in Appendix E.
Total variation denoising is a denoising technique that tries to remove noise
from the image while keeping edges. The method uses a regulation term
which weighs how much the denoised image should look like the original
image, and to what degree it should be �at. The result after doing such
a denoiseing is that the image appears �patchy� with strong edges between
the patches. However, by weighting the original image su�ciently high,
gradients can be kept.

Vein Estimation When the leaf has been �ltered from noise, the vein
can be found by making a line search between the opposite sampled points
as shown in Figure 2.29a. The line search is made by doing a 100 points

(a)Lines for vein searching
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(b)Example on dark vein on sugar beet
leaf without TV denoising
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(c)Noisy leaf cross-section of sugar beet
leaf
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(d)Noisy leaf cross-section of sugar beet
leaf �ltered with TV denoising

Figure 2.29: cross sections of sampled sugar beet leaf
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interpolation using the Matlab function impro�le, which returns a vector
of the intensities along the line.

For some leaves, the vein is darker than the average colour of the leaf,
whereas for other leaves, it is lighter. For some leaves, the intensity of the
vein changes from being lighter than the average colour in some places of the
leaf to be darker in others. Therefore, to take both cases into account, the
vein is found at the largest di�erence from the mean intensity along the line.
An example of a dark part of the vein is seen near the stem in Figure 2.29a,
where the cross section is seen in Figure 2.29b. Likewise a crosssection at a
light place is shown in Figure 2.29c.

However, as illustrated in Figure 2.29c the top points are close to indistin-
guishable from each other. Especially when looking at the largest di�erence
from the mean, which results in even more candidates.
Using TV denoising will provide a more easily distinguishable top point, as
seen in 2.29d. It should also be notished that the leaf-boundary is forced
towards zero as shown in Figure 2.29d. This has to do with the black back-
ground.

To make the estimate more robust, the estimation of the vein is made as a
linear combination of the current estimate weighted by 2/3 and the previous
estimate weighted by 1/3. This should be an acceptable estimate, as long
as the sampling distance is reasonably small compared to the twist of the
leaf12.

Until now the edge has been sampled equidistantly. That is clearly not
correct, as the perspective of the leaf is thereby omitted. The edge should
therefore be re-sampled according to the real distances and not the projected
distances that can be seen in the image. However, as the images of the plants
are only taken from one direction, it is not possible to extract the correct
bending of the leaf, which is necessary to �nd the correct re-sampling along
the contour.

Vein recti�cation When the centre of the leaf has been found, it is time
to rectify the leaf. The �rst step in this process is to divide the leaf into
small quadrilaterals that will be processed individually. The quadrilaterals
is made from two pairs of samples as shown in Figure 2.30a.

The reason for processing the leaf in small sections is that the leaf will be
straighened using a homography transformation, in which straight lines are
preserved. Therefore, the quadrilaterals have to be small enough to make
this assumption valid. At the same time, it makes it easier to implement
the recti�cation, using three general rules for how these shapes make up the
straightened leaf shape. These rules are that:

12The Matlab script is located in: Matlab/Plantnormalization/findcenterline.m
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Leaf Straightening

1. The leaf is symmetric around the centre vein,

2. The two cross sections of the leaf and the quadrilateral are parallel,

3. The quadrilateral is an isosceles trapezium,

where the last two rules are consequences of the former. Thereby the desired
quadrilateral looks like Figure 2.30b.

As the real width of the leaf is unknown, the distance |p1′p2′| in Fig-
ure 2.30b will be set to two times the largest of the distances from the two
corners (p1 and p2) in the unrecti�ed quadrilateral in Figure 2.30a to the cen-
tre line. The same procedure goes for the distance |p3′p4′| in Figure 2.30b,
where the distance will be the largest of the distances from p3 and p4 in
Figure 2.30a to the centre line.
The width |c1′c2′| of the trapezium will be set to the length of the centerline
in the quadrilateral shown in Figure 2.30a

p2

p1 p4

p3

c2c1

(a)Quadrilateral made from two sets of curvature
samples

c2'

p1'

p2'
p3'

p4'

c1'

(b)Desired isosceles
trapezium for the
quadrilateral

Figure 2.30: Example on the desired recti�cation of the quadrilaterals from the leaf

To make the quadrilateral points pi on the leaf in Figure 2.30a match
the points p′i on the desired isosceles trapezium in Figure 2.30b, we need to
�nd the homography H that makes this transformation. The value i de�nes
the index of a point, where i = 1, . . . , n for n points. The points p′i can be
estimated as [46, p. 78]:


p̂i

x̂i
ŷi
ŵi

 =


H

h00 h01 h02

h10 h11 h12

h20 h21 h22

 
pi

xi
yi
1

 (2.21)
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
p′i

x′i
y′i
1

 =


p̂i
x̂i
ŵi
ŷi
ŵi
ŵi
ŵi

 (2.22)

As can be seen from Eq. 2.21 and 2.22, the points are listed using ho-
mogeneous coordinates, which is necessary in order to handle the problem
using simple multiplications.

From this we get:

x′i =
h00xi + h01yi + h02

h20xi + h21yi + h22
and y′i =

h10xi + h11yi + h12

h20xi + h21yi + h22
(2.23)

⇓

x′i (h20xi + h21yi + h22) = h00xi + h01yi + h02

y′i (h20xi + h21yi + h22) = h10xi + h11yi + h12

(2.24)

⇓



A2n×9

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1
0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

...
xn yn n 0 0 0 −x′nxn −x′nyn −x′n
0 0 0 xn yn n −y′nxn −y′nyn −y′n





h9

h00

h01

h02

h10

h11

h12

h20

h21

h22


=



02n

0
0
...
0
0



(2.25)
This de�nes a least squares problem [47], which is to minimize:

min ‖Ah− 0‖2 (2.26)

As h is only de�ned up to scale [48], it has to be �xed. This can be done by
setting the last entry h22 = 1. The solution is now achieved from the sin-
gular value decomposition of A, and then set h equal to the singular vector
corresponding to the smallest eigen value13.

To make a homography transformation, at least four �x-points are re-
quired, n ≥ 4. However, as the centre line should also be �xed, all six points

13The Matlab script is located in:
Matlab/Plantnormalization/hexRectify.m
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Segmentation Tool

(a)Recti�ed parts of the leaf (b)Connected parts

Figure 2.31: Leaf after it has been �straightened�

marked in Figure 2.30b must be used. On the two ends of the leaf, either
(p1, p2 and c1) or (p3, p4 and c2) will be located at the same point, but
this will not be a problem, as there are still four unique points.
When all quadrilaterals have been recti�ed, the only thing left is to combine
the fractions. This is an easy step, as we know that the centre vein of the
leaf is in the centre of the recti�ed quadrangles, whereby the pieces can be
aligned at the centre. The pieces and a complete, straightened leaf is shown
in Figure 2.31.

Evaluation of the leaf straightening method The method described
above for straightening leaves is made with assumptions, which are not valid
for all kinds of leaves. First of all the leaf is expected to have its two sharpest
corners at the leaf tip and at the stem. For most small foliage leaves this
can not be expected to be the case. Such a case, where the method fails,
is when testing on a cotyledon of Scentless mayweed, where the size of the
cut of the stem account for a big part of the total circumference of the leaf.
This is shown in Figure 2.32. Conversely, one could argue, such a leaf might
not require recti�cation.
Another problem arises when the leaf margin changes direction so that the
cross sections of the leaf intersect with the margin at other points. One of
these cases where the method fails is shown in Figure 2.33 of a Shepherd's-
purse foliage leaf. The method therefore needs improvements to handle
these cases as well, though a natural �rst step would be to only straighten
leaves that are bending. To test whether leaves are bending, the area of the
convex hull relative to the total area of the leaf (solidity) could be used as a
measurement.

2.5. Segmentation Tool

To handle the step from raw RGB images to segmented and labelled
plants and leaves, a segmentation tool has been developed. The di�erent
steps in the segmentation tool have not been documented in details though
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(a)Input cotyledon with
low curvature and big
stem cut.

(b)Centre line of (a). (c)Bad straightening of (a).

Figure 2.32: Cotyledon of Scentless mayweed after it has been �straightened�. See how
the method fails to �nd the leaf tip and stem, which result in undesirable
behaviour.

Figure 2.33: Foliage leaf of Shepherd's-purse that cannot be straightened due to inter-
secting cross sections

a great e�ort has been invested in this procedure. The �rst step is an au-
tomated procedure for colour segmentation. The tool uses ExR-ExG de-
scribed in Section 2.2 in order to extract plants/green material from an
image, thereby removing unwanted background. Afterwards, green materi-
als are connected in structs. Each struct contains an RGB image, a greyscale
image, a binary mask and a bounding box. Figure 2.34a shows an (cropped)
RGB image from the database. Figure 2.34b presents the result of the colour
segmentation, where each segment is encapsulated by a bounding box, and
�nally, the images stored for each plant struct in Figure 2.34c.
A function is implemented in Matlab

14 to make a colour segmentation and
to place plants into structs. Another function has been implemented in
Matlab to show the segmentation as seen in Figure 2.34b adding a bound-
ing box around every segment and adding a little brightness to the plants
for better visualization.

14The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/simpleSegmenting.m
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Segmentation Tool

(a)Cropped image from the
database.

(b)Green elements are
wrapped in a bounding
box and highlighted with
a little brightness.

(c)RGB, greyscale and the bi-
nary mask of a plant.

Figure 2.34: Green elements are divided in to plant structs. Each plant is shown with a
bounding box and stored as an RGB image, a greyscale image and a binary
mask.

The database consists of images of multiple species at di�erent growth
stages. For each species, four trays are �lled with plants. Images are then
taken in intervals of 1-4 days throughout the di�erent growth stages. Initially
all plants are well separated (also due to some pruning), but in the �nal
growth stages, plants will start to overlap. In Figure 2.35 di�erent growth
stages are shown. The big overlap of plants in the �nal growth stage, should
be noticed.

A script is therefore developed with the purpose of selecting overlapping
plants and divide them into multiple plant structs. In Figure 2.36 the proce-
dure for selecting and dividing plants has been illustrated. In Figure 2.36b
overlapping plants are selected and highlighted in blue. In Figure 2.36c
the selected overlapping plants are divided by manually drawing black lines
to separate plants. Finally valid plant elements are selected and stored as
shown in Figure 2.36c and 2.36d.

Another problem is that some leaves are not attached to a plant. A
script is therefore needed to manually join individual leaves into a whole
plant/struct. An image of all segments are shown in Figure 2.37a with a
bounding box to show how plants are divided into segments. A left-click on
multiple elements adds them into a single plant struct while colouring them
red. A right-click will end the selection of leaves, colour them blue and start
a new selection of leaves as shown in Figure 2.37a. By pressing space, the
whole session ends and new structs are made as seen in Figure 2.37c.

The fourth step in the segmentation tool is made to manually discard
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(a)Growthstage ≈ BBCH 14.
Date: 2012-12-07. Small
plants physically separated.

(b)Growthstage ≈ BBCH 17.
Date: 2012-12-14. Medium
plants start to overlap.

(c)Growthstage ≈ BBCH 33.
Date: 2012-12-20. Almost all
plants overlap.

Figure 2.35: An example of the di�erent growth stages of shepherd's-purse in the pro-
vided database.

unwanted elements by pointing them out one by one, which turns them red
as illustrated in Figure 2.38. Pressing space ends the session and the marked
elements are removed (a plant is selected only to show that unwanted/red
elements are removed). The elements that are removed are either green
noise, which wrongly has been detected as a green element, or plants that
are overlapped by other plants.

The steps described above are all implemented in the same Matlab

script15. Besides ways of redoing minor steps throughout the segmentation, a
backup is also automatically stored at each of the four step to avoid restarting
a whole session if something goes wrong.

All overlapping and discarded elements are stored to be on the safe side,
but a minor Matlab scripts16 removes all overlapping and discarded plants
from the backup.
The next step seeks to divide plants into individual leaves.

The PSEP algorithm has been used in this stage, as it enables extraction
of foliage leaves and non-ideal leaves in general, and because it performs
must faster. The Matlab script17 runs through all leaves and stores the

15The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/segmenting1to4_MultiplePlants.m

16The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/segmenting5_MultiplePlants.m

17The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/segmenting6_PSEP_dividingPlantsInLeaves.m
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Segmentation Tool

(a)All segments. (b)All overlapping elements are selected
manually.

(c)Overlapping elements are divided manually by drawing
black lines, dividing an element in two/more elements.

(d)Valid and whole plants
are selected (marked by
blue).

Figure 2.36: The procedure of selecting overlapping plants, dividing them and selecting
whole plants.

bounding box and binary mask for each leaf found in the plant.
To make it possible to only describe a species within a certain growth stage,
a segmentation step manually labels each plant within the di�erent growth
stages of either sprout, plant of only cotyledon leaves, a plant of both cotyle-
don and foliage leaves or a plant at a high growth stage. Each plant is
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(a)Leaves are connected into
plants.

(b)All leaves have been se-
lected.

(c)Result after
segmentation.

Figure 2.37: The procedure of selecting leaves and connecting them into a single plant.

Figure 2.38: The procedure of selecting unwanted elements by manually pointing them
out in the scene.

individually inspected and labelled in a Matlab script18. The script shows
an image of the whole scene making it possible to get a feel of the size of
the plant sample, as illustrated in Figure 2.39. A number is then pressed
to label the plant: 1) Discard element 2) Sprout element 3) Cotyledon 4)
Cotyledon+foliage 5) Overgrowth. Finally a Matlab script19 is used to

18The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/segmenting7_dividingPlantsInGrowthstageTypes.

m
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Plant data structure

Press: 1: Discard element, 2: Sprout 3: Cotyledon, 4: Cotyledon+foliage,

5: "Overgrowth", Backspace: redo last picture, ESC: redo whole image

Species3 Box1 GrowthStage3 sample 1/24

Press: 1: Discard element, 2: Sprout 3: Cotyledon, 4: Cotyledon+foliage,

5: "Overgrowth", Backspace: redo last picture, ESC: redo whole image

Species3 Box1 GrowthStage3 sample 1/24

Press: 1: Discard element, 2: Sprout 3: Cotyledon, 4: Cotyledon+foliage,

5: "Overgrowth", Backspace: redo last picture, ESC: redo whole image

Species3 Box1 GrowthStage3 sample 1/24
Press: 1: Discard element, 2: Sprout 3: Cotyledon, 4: Cotyledon+foliage,

5: "Overgrowth", Backspace: redo last picture, ESC: redo whole image

Species3 Box1 GrowthStage3 sample 1/24

Figure 2.39: Select growth stage

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Art3 Box1 GS3 s. 1/1

Select valid leaves

Space: selection done, ESC: redo plant Press: 1 Press: 2

Press: Shift & 1 Press: Shift & 2

Figure 2.40: Valid leaves are selected. Choosing between two implementation of PSEP.

manually inspect each leaf labelling it either not-leaf, cotyledon or foliage.
The procedure goes as follows: 1) Cotyledon leaves are selected pressing a
number (with or without shift as the PSEP algorithm is implemented in two
ways). 2) Selection is ended by space. 3) Foliage leaves are selected. 4)
Selection is ended by space. 5) Each leaf is validated as either a bad, an OK
or a good leaf by pressing 1,2 or 3 respectively.

2.5.1 Plant data structure

All the data, created by the segmentation tool, is provided in the raw
database. It contains 7 di�erent species with four plant trays for each species.
These species are then photographed 7 to 9 times over the di�erent growth
stages, thereby providing a total of 236 images. These images contain around
2800 structs that all have to be treated in 8 segmenting stages. A data
structure has therefore been used in order to provide easy and fast access
to all the data. Firstly data is being stored for each segmentation step to

19The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/segmenting8_EvaluateLeaves.m
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species
nSpecies

growthStage
nGrowthStages

sample
nSamples

folder
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dir

growthStage

speciesName

speciesNr
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bwMask
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Figure 2.41: Numbers of labelled elements in the dataset for the di�erent species

avoid redoing steps, if things have gone wrong. In each step, all plants are
not stored in a single �le, but in multiple .mat �les - one for each species,
growth stage and tray. This might seem messy, but the loading time is
reduced signi�cantly as fewer plant samples are loaded at the same time. A
Matlab function20 is created to get one or multiple wanted plant samples,
while only loading the necessary data �les from the database. The function
returns a struct containing lots of valuable (and less valuable) data for each
plant. Figure 2.41 shows the structure and the provided information for each
plant.
The structure is divided in six levels.

0. All plants are contained by the lowest level of the struct.

1. All species and the number of species (nSpecies) are accessible.

2. All growth stages and the number of growth stages (nGrowthStages)
within the selected species are accessible.

3. All samples and the number of samples (nSamples) within the selected
species and growth stage are accessible.

4. Information and image for the plant is accessible.

5. Information and the image of the extracted leaves are accessible.

Table 2.1 shows the number of plants structs for the 7 species including
a count of the three plant elements; plants, cotyledons leaves and foliage

20The Matlab script is located in:
Matlab/DatabaseTools/getMultiplePlants.m
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leaves. As Maize does not have foliage leaves, and Winter Wheat (grass)
does not have actual leaves theses count to zero.

# Species Plant structs Whole plants Cotyledons Foliages

1 Maize 250 250 194 0
2 Wheat, winter 198 198 0 0
3 Sugar beet 462 325 832 23
4 Scentless mayweed 578 575 404 473
5 Shickweed 706 703 1199 309
6 Shepherd's-purse 275 255 386 322
7 Cleavers 344 130 394 231

total 2813 2436 3409 1358

Table 2.1: The number of plants and leaves for the seven species

2.6. Segmentation Discussion and Conclusion

In this chapter, the procedure for plant and leaf segmentation has been
documented. Plants have been segmented from the background using ExG-
ExR, whereafter these segments have been divided into individual leaves
using a modi�ed PSEP algorithm. A fuzzy clustering method to extract
overlapping leaves has also been implemented. The last method is able to
handle overlapping cotyledons. However, the method is computationally ex-
pensive and it does not perform well for non-convex-shaped leaves.
A method for straightening leaves has also been proposed in order to over-
come some of the within-species variance of bending leaves. The method
performs well for some leaves, but needs optimization for it to become more
robust; either by a self-detection of whether the leaves are feasible for the
straightening process or by extending the method to handle a bigger varia-
tion of species.

A segmentation tool sets a framework for handling the di�erent segmentation
steps for all plants. The tool includes automated steps of extracting plants
and leaves, but it also provides some manual steps concerning the labelling
of plants and leaves. Plants are labelled by their growth stage, while leaves
are divided into either cotyledon and foliage leaves including a rating of how
ideally-shaped these leaves are. For a fully automated system, the manual
labelling step has to be automatized or avoided, but for testing purposes it
makes it possible to detect the robustness for di�erent degrees of non-ideal
leaves.
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Chapter3
Feature Descriptors

With a good segmentation of both plants and leaves in hand, the next step
is to extract features.

In pattern recognitions, features are values that describe certain charac-
teristics of an object. A good feature provides discrimination between the
objects or classes that are to be separated. This will, of course, depend on
the given domain, but it is often desirable to have features that are invariant
to translation, rotation and noise.

As plants will experience large transformation during their growth, a
good feature in the plant domain will also have the quality of being growth
invariant. In the literature of plant recognition, two feature branches are
dominating. One branch describes the whole plant [14, 15, 16, 17] and the
other branch describes the leaves of the plant [49, 18]. Features describing
the whole plant are assumed to be very dependent on growth stages, as the
plant will go from sprout to being a plant with more and more leaves. Based
on this assumption, features describing only the leaves from a plant are
presumed to be more invariant to growth. However, at low growth stages,
the sprouts of di�erent species have very similar leaves, which complicates
the discrimination of the species.
Both branches will have advantages and features are therefore calculated for
both whole plants and single leaves.

There are many aspects of the appearance of plants and leaves that can
be considered when �nding features. For botanists, shape, leaf margin and
vein structure are the most useful features[50]. In image processing, shape
and leaf margin/contour typically are easier to extract than the vein struc-
ture, because of greater contrast to the background, making contours an
optimal feature for image processing. At the same time, working with the
veins of the leaves requires a high image resolution, low blurring and high
contrast, which is not the case for most cotyledon surfaces in the dataset.
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3.1. Related work in the field of feature extraction

Features describing plants or leaves in computer vision are grouped in
multiple categories [32]. One category describes the shape or region of the
whole plant by using the mask of the element e.g. ratio between principal
axes (elongation) and ratio between area and convex hull area (solidity).
Another category, de�ned as the contour based features, uses a description
of the boundary of the object. In elliptic Fourier the contour is approximated
by a certain number of Fourier coe�cients [49] and [18]. Elliptic variance
[51] is also a contour based feature, providing a measure for the variation
of the contour compared to an ellipse. The contour may also be described
by active shape models [14, 52, 15]. A third category uses the re�ectance
properties for a plant. In the visible spectrum, this group is simply de�ned
as colour features, but the plant may also be described in the near infrared
spectrum, outside the visible spectrum. In [34] the re�ectance properties
of the volunteer potato plant and the sugar beet were used as features by
measuring multiple wavelengths in a band from 450 to 1650 nm. A fourth
feature category uses the texture of the plant as described in [53], using
classical textural features.

3.2. Features Description

In the following section a broad range of features are documented and
implemented. Some are general features used in pattern recognition, while
others are targeted towards discriminating plants or leaves.
First, di�erent presentations of a plant and the Region of Interest (ROI)
are described in Section 3.2.1. The feature descriptors are then divided into
the categories Shape Features, Contour Features, Colour Features and Other
Features in Section 3.2.2, 3.2.3, 3.2.4 and 3.2.5, respectively.

Some features are merely included in the documentation for the sake of
completeness, while the di�erent variations of the distance transform fea-
tures, the variation of elliptic Fourier, the variations of the distance elliptic
Fourier and the stem thickness feature are more important contributions
made in this project. To distinguish between a feature descriptor that out-
put a single value (e.g Solidity) and the multiple values outputs by some
feature descriptor (e.g Elliptic Fourier), the multiple values from a feature
descriptor is de�ned as subfeatures.
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Shape and Contour De�nitions

A Matlab script1 has been made to run through the structs of all plants
and leaves and calculate all features for these by using another Matlab

script2.

3.2.1 Shape and Contour Definitions

Shape and contour features are calculated by using di�erent representa-
tions of the plant, thereby including or removing information from the orig-
inal RGB image, as illustrated in Figure 3.1a. All features in this project
require the background (pixels not related to the speci�c plant) removed as
shown in Figure 3.1b. In colour based features, the RGB image is required,
while some features only rely on the greyscale image as in Figure 3.1c. Shape
related features mostly require a binary image, which only contains the sil-
houette of the plant as shown in Figure 3.1d. This is also de�ned as the
Region of Interest (ROI). Finally, the contour based features use the bound-
ary of the plants, either as a binary image, Figure 3.1e, or as a sorted list
containing all the points traced around the boundary in either the clockwise
or counter clockwise direction. The boundary binary image and the sorted
boundary list can be acquired by respectively using the built-in Matlab

functions called bwperim() and bwtraceboundary().

(a)Raw RGB
image.

(b)RGB image
without
background.

(c)Greyscale im-
age.

(d)Binary plant
mask image.

(e)Binary plant
boundary im-
age.

Figure 3.1: The di�erent representations of a plant.

Di�erent features require a new representation of the ROI[54]. One repre-
sentation de�nes an ellipse of the ROI as shown in Figure 3.2a. Orientation,
centre, radius of the major and minor axis of the ellipse can be determined
with the Matlab built-in function regionprops(). The convex hull of the
ROI is shown in Figure 3.2b and determined by the build-in Matlab func-
tion regionprops(). The minimum bounding rectangle determines, as the

1The Matlab script is located in:
Matlab/Features/Demo_CalculateFeatures.m

2The Matlab script is located in:
Matlab/Features/calculateFeature.m
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name implies, the rectangle with the minimum area that bounds the ROI as
in Figure 3.2c. Finding the optimal solution is a computationally intensive
procedure. An approximations is therefore determined using two di�erent
algorithms. The algorithms will not be described in details, but the �rst al-
gorithm, rotating calipers [55], uses the convex hull of the ROI. The second
algorithm [56] uses PCA to �nd the orientation of the ROI and afterward
wraps a rectangle around the ROI in that direction. Both algorithms are
implemented in Matlab

3. The minimum bounding rectangle is found by
using the solution that �nds the minimum area. The �nal presentation �nds
the largest circle �tted within the ROI (interior circle) and the smallest cir-
cle with a centre equivalent to the centroid of the ROI that can be wrapped
around the ROI (exterior circle) as in Figure 3.2d.

(a)Ellipse. (b)Convex Hull. (c)Minimum bound-
ing rectangle.

(d)Interior circle
(red) and exterior
circle (blue).

Figure 3.2: Di�erent presentations of the region of interest.

3.2.2 Shape Features

Object Area , AROI ,
The area of the ROI in pixels.
Determined in Matlab by regionprops('Area'). The feature is by de�-

nition not scale invariant, but might be useful as the object area is closely
related to the actual size of the plant (if all images are taken from the same
height). This might be valuable when determining the size or the growth
stage of a plant.

Object Perimeter , PROI ,
The length of the ROI contour in pixels.
Determined in Matlab by regionprops('Perimeter').

Convex Hull Area , ACH ,

3The Matlab script is located in: Matlab/Features/calMBR.m
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The area of the convex hull of the ROI in pixels. Determined in Matlab

by regionprops('ConvexImage') followed by regionprops('Area').

Convex Hull Perimeter , PCH ,
The length of the convex hull contour in pixels. Determined in Matlab

by regionprops('ConvexImage') followed by regionprops('Perimeter').

Solididy Is a measure of the convexity of the objects. It is calculated as
the ratio between AROI and ACH also de�ned as the area ratio of convex
hull [54], and can be calculated in Matlab by regionprops('Solidity').

Solidity =
AROI
ACH

(3.1)

Figure 3.3: Solidity. Blue area shows the shape of ROI. Red dashed line shows the shape
of the convex hull of ROI.

Convexity The ratio between PCH and PROI [51].

Convexity =
PCH
PROI

(3.2)

Compactness Describes a ratio between the area and the major axis in
the ellipse[57].:

Compactness =

√(
4
π

)
·AROI

LMajorAxis
(3.3)

Aspect Ratio The ratio between the length, Dmax, and the width, Dmin,
of the minimum bounding rectangle[54].

AspectRatio =
Dmax

Dmin
(3.4)
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Rectangularity A measure of how rectangular-like the shape is given by
the ratio between ROI area and the area of the minimum bounding rectangle
[54].

Rectangularity =
AROI

Dmax ·Dmin
(3.5)

Spherity A measure of how circle-like the shape is. It is given by the ratio
between the radius of the interior circle ri and the exterior circle re [54].

Sphericity =
ri
rc

(3.6)

Eccentricity A measure of how circular a shape is. It is determined using
the Matlab build-in function regionprops('Eccentricity').

Eccentricity =

√
1− b2

a2
(3.7)

where a and b respectively is the length of the major and minor inertia axis
of the ROI.

Ratio of Principal Axis De�ned as the ratio between the principal axis.

RatioOfPrincipalAxis =
b

a
(3.8)

where a and b respectively is the length of the major and minor inertia axis
of the ROI. Closely related to eccentricity.

Form Factor A third method to measures how circle-like the shape is. A
perfect circle has a form factor value of 1. It is de�ned in [57] as:

FormFactor =
4 · π ·AROI
PROI

2 (3.9)

Hu-moment Moments in general are measures used to describe the shape
of a set of points such as orientation, area or width [58, 57]. The raw moment
for pixel-coordinate (x, y) in the discrete case is de�ned as[59]:

Mpq =
∑
x

∑
y

xpyqI (x, y), (3.10)

where I (x, y) is the pixel intensity at coordinate (x, y). In the binary case,
I can either be 1 or 0, which means that the moments are only based on
the non-zero pixels. Therefore, I is removed and x, y is limited to only be
de�ned over the region Region de�ned as the points in the binary mask that
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equals 1.
Some variations of this moment are called the central moments. The central
moments de�ne the moments about the mean of x and x and is given by[59]:

µpq =
∑∑

x,y∈Region
(x− x̄)

p
(y − ȳ)

q
, (3.11)

where x̄ and ȳ are the means of x and y, which de�ned from moments
are given by x̄ = M10

M00
and ȳ = M01

M00
. These central moments are translation

invariant and can be invariant to scale by normalizing the moments to a scale
given by[59]: ηpq =

µpq
µγ00

, where γ = p+q
2 + 1. The seven �rst HU-moments

are then given by4:

φ1 = η20 + η02 (3.12a)

φ2 = (η20 − η02)
2

+ 4η2
11 (3.12b)

φ3 = (η30 − 3η12)
2

+ (3η21 − η03)
2 (3.12c)

φ4 = (η30 + η12)
2

+ (η21 + η03)
2 (3.12d)

φ5 = (η30 − 3η12) (η30 + η12)
[
(η30 + η12)

2 − 3 (η21 + η03)
2
]

+ (3.12e)

(3η21 − η03) (η21 + η03)
[
3 (η30 + η12)

2 − (η21 + η03)
2
]

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]

+ (3.12f)

4η11 (η30 + η12) (η21 + η03)

φ7 = (3η21 − η03) (η30 + η12)
[
(η30 + η12)

2 − 3 (η21 + η03)
2
]
− (3.12g)

(η30 − 3η12) (η21 + η03)
[
3 (η30 + η12)

2 − (η21 + η03)
2
]

Fractal Dimension Fractal dimension is a measurement of the complexity
of the boundary of an object. That is, how much does the object bound-
ary change, when the measurement scaling of the boundary is changed? The
fractal dimension value is a value describing the irregularity of an object and
how much of the space it occupies. A true fractal object will still have fractal
characteristics, when it is enlarged towards in�nity. From this de�nition, it
should be clear that the resolution of the object has big in�uence on the
precision of this measurement, as details in a highly �uctuating boundary
will be lost due to the sampling, which will then result in no more changes.
Fractal dimension can be calculated in di�erent ways[16, 57]. A simple

4The Matlab implementation is based on [60]
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1.0 0.5

(a) Ruler length = 1 unit. 18 steps
around leaf contour

1.0 0.5

(b) Ruler length = 0.5 unit. 40 steps
around leaf contour

Figure 3.4: The Richardson procedure for two di�erent ruler lengths

method is called the Box Counting method, in which a grid is placed on the
image with a contour. The Fractal dimension is then the number of grid-cells
within the contour at di�erent grid sizes. As the grid size shrinks, the cells
will be able to �ll out the more fractal parts of the contour. For shapes with
fractal characteristics, this means that the area covered with cells increases
as the grid size is decreased.
Another method is the so-called Richardson plot. Here a ruler with a certain
length is placed around the contour of the shape, starting at some point. The
number of steps around the contour multiplied with the ruler length gives a
perimeter measurement. By changing the length of the ruler, this measure-
ment changes, and thereby produces the fractal dimension measurement[57].
The principle is shown in Figure 3.4.

However, according to [16, 57] a simple and precise method is the Minkovski
method, which does not give identical results to the Box counting method
and the Richardson plot method. Still, the results are correlated and there-
fore no more information will be added by using multiple methods[57].
According to this method, the distances from all pixels within the contour
to the contour of the plant is found. These distances are grouped in a his-
togram with a bin-distance of one, indicating the distribution of pixels at
certain distances from the contour. By taking the accumulative sum of this
histogram, a measurement of the amount of pixels within a certain distance
from the contour is found. The fractal dimension of the shape is then found
by �tting a �rst order polynomial to a log-log plot of the measurements,
from which the fractal dimension is given by Eq. 3.13 [57, 61, p. 605], which
because of the �xed pixel-size can be approximated as follows:

FD = 2− lim
d→0

logA

log d
≈ 2− logA

log d
, (3.13)

where A (d) is the area of all pixels at distance ≤ d from the contour, which
is simply the number of pixels within this distance.

Distance Transform The distance transform Mmap of a binary boundary
image is a matrix or image with the same size as the binary boundary image,
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(a) Input plant (b) Eucledean distance
transform of leaf

0 0.5 1

3.8
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4.2

4.4

4.6

log d

lo
g
A

(d
)

(c) Plot of accumulated histogram
with �rst order line �tting

Figure 3.5: The Minkovski method for �nding the fractal dimension

in which each pixel contains the distance in pixels to the closest boundary.
To make the distance transform, a binary boundary image is created from
the ROI as shown in Figure 3.6a and 3.6b
The distance transform is then found by assigning to all pixels within the
boundary a value corresponding to the Euclidean distance to the closest
boundary pixel. This is shown in Figure 3.6c. As only the area within the
contour is of interest, all pixels outside the boundary is set to -1. Figure
3.6d shows the normalized distance map inside the plant mask.

(a) Plant mask. (b) Plant boundary. (c) DT normalized. (d) DT inside plant
mask normalized.

Figure 3.6: Distance transform for the inside of a plant.

From the distance transform, Mmap, a distance vector d is created which
contains all distances d 6= −1. This vector is dependent on both rotation
and scale of the original image. To make the vector rotation invariant, d is
sorted in ascending order to become dsort
This vector dsort is the basic for three additional distance vectors, recom-
mended by [17]:

• dscaled, which is dsort normalized to the largest distance in dsort.
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• daccu, which is the accumulated sum of dsort. This describes the
amount of pixels with distances less than a given value.

• daccuScaled, which is daccu normalized to the largest value in daccu.

When normalizing the vectors, the features become scale invariant. Whether
this is good or not, depends on the camera set-up. If the height of the cam-
era varies, scale will just be noise in the feature, as it does not re�ect the
size of the plant.

These vectors have di�erent characteristics for di�erent shapes, which is
shown in Figure 3.7. To illustrate how the shape of the �gure is re�ected
in the graphs, two very di�erent leaves are used; a grass straw and a sugar
beet leaf. The pixel indices are scaled to lie between -1 and 1, which will be
explained later. From the two graphs it is seen that the amount of pixels
with short distance to the boundary is larger for the grass straw than for the
sugar beet leaf. The distance transform will therefore be able to discriminate
leaves depending on their distribution of mass relative to their boundary.

In addition to these four vectors, dsort, dscaled, daccu and daccuScaled,
proposed by [17], a new scaling method is tried out. The vectors dsort and
daccu are not scale invariant and dscaled and daccuScaled are scale invariant,
but lots of information are removed when normalizing the distances. In the
new method, dscaledAreaRoot, the distances will be scaled according to the
square root of the length of the vector, i.e. the square root of the area of
the leaf. By doing this, a new vector is found, which is close to being scale
invariant.
When scaling according to the square root of the area, the leaf is assumed
to be a circle, for which the area is given by:

A = π · r2

⇓

r =

√
A

π

(3.14)

as π is a constant, we get that r ∝
√
A. The assumption of scale invariance is

only true for circles. However, it is still close to being the case for non-round
leaves. Figure 3.7h shows three input images, for which dscaledAreaRoot is
calculated for the original input images, and the input images scaled to 1/4
of its area. Here, it can be seen that the error is small when scaling to 1/4
compared to the di�erence between the two species.
With this new scaling, it is still possible to get the information that e.g.
normal leaves have pixels far from the contour compared to grass, which can
not be seen from the other two scale invariant vectors, dscaled and daccuScaled.

From these curves, it is necessary to extract features that are able to
discriminate the di�erent shapes. Two methods are recommended by T.
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(a) Sugar beet
input

(b) 1/4
Sugar
beet
input

(c) Grass input
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(d) Sorted distance vector, dsort
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tor, daccu
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(g) Sorted, accumulated and scaled dis-
tance vector, daccuScaled
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Figure 3.7: Distance transform of grass and sugar beet. The two sugar beet leaves are
the same, but with di�erent scale. Notice in (e) and (g) how dscaled and
daccuScaled are scale invariant, but the two species are almost indistinguish-
able. As opposed to this the new suggested method, dscaledAreaRoot, shown
in (h), is still scale invariant, but the two species are distinguishable
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Giselsson [17]; re-sampling the curves and Legendre polynomial �tting. In
the �rst method, a number of equidistant samples are taken along the index
axis to represent di�erent features. The problem with sampling is that only
information about the sampling points are stored. The second method uses
polynomial �tting using Legendre polynomials. The reason for using these
coe�cients over normal polynomial coe�cients is that the coe�cients from
Legendre polynomials are orthogonal and thereby independent. The single
features will therefore remain the same no matter the order of the polyno-
mial.
The polynomial P (x) is given as a weighted sum of the Legendre polynomi-
als:

P (x) =

∞∑
n=1

anpn, (3.15)

where an is the weight of the n'th Legendre polynomial, pn (x) of order
n− 1. All these polynomials are orthogonal which means that∫ 1

−1

pl (x) pk (x)dx = 0 , l 6= k (3.16)

The Legendre polynomials are normalized to p0 (x), which is therefore
set to 1. The polynomials are given by [62]:

pn+1 (x) =
(2n+ 1) · x · pn (x)− n · pn−1 (x)

n+ 1
(3.17)

The polynomial weights are calculated using Matlab [63], where the
optimum polynomial weights are found in a least square sense. For the
sugar beet in Figure 3.7h, the Legendre polynomials for order n = 2, 4 and 6
are shown in 3.8. It is seen that the polynomials of di�erent orders primarily
di�er in the area close to x = 1, where even the 2nd order polynomial is a
good estimate for the curve in the range [-1:0.8], but not in the range [0.8:1].
For the grass sample, the second order polynomial is much closer to the real
distance curve than for the sugar beet. It will therefore be interesting to
�nd a feature that can show this di�erence and see if there is a tendency.

For this, the Pearson product-moment correlation coe�cient, r2, is used,
which is a scale independent measurement of how well the Legendre polyno-
mial �ts the curves.

r2 =

 (y − ȳ)
T

(x− x̄)√
(y − ȳ)

T
(y − ȳ) · (x− x̄)

T
(x− x̄)

2

(3.18)

The error could of course be removed by increasing the polynomial order
su�ciently, but by �xing the polynomial order to 2, most of the slope can be
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Figure 3.8: Legendre polynomial �tting for sugar beet leaf from Figure 3.7a
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Figure 3.9: Di�erence from Legendre �t and distance transform for the grass and sugar
beet example in 3.7

modelled except the slope close to 1, whereby r2 only depends on this part.
The example with grass and sugar beet is shown in Figure 3.9, where it
should be clear that the approximation of grass by a second order Legendre
polynomial is better than the approximation of a sugar beet leaf.
The distribution of r2 for the cotyledons of the plant species, used in this
project, is shown in box-plots in Figure 3.10. Even though the box-plots are
overlapping, it is clear that higher order polynomials are necessary to model
Scentless mayweed, which result in low correlation coe�cients. However, for
all species, large outliers exists.

Distance Transform Mean and Variance Two additional features re-
lated to the distance transform are described in [16]. The mean distance for
the N samples inside the plant region.
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Figure 3.10: Boxplot of the correlations coe�cient for the seven species, when �tting to
a 2nd order Legendre polynomial

dmean =
1

N

N∑
n=1

d (n), (3.19)

and the variance of the distance for the N samples inside the plant region.

dvar =
1

N

N∑
n=1

(d (n)− dmean)
2 (3.20)

3.2.3 Contour Features

Circularity The circularity [54], also known as circular variance [51] is
de�ned as:

C =
σ2
R

µ2
R

(3.21)

where µR the mean distance from the centroid of the ROI µ =

(
µx
µy

)
for

all the points in the contour pi =

(
xi
yi

)
, where i = 0, . . . ,K − 1 and K is

the number of samples around the contour.

µR =
1

K

K−1∑
i=0

‖pi − µ‖ (3.22)

Finally σ2
R is the variation from the centroid of ROI.

σ2
R =

1

K

K−1∑
i=0

(‖pi − µ‖ − µR)
2 (3.23)
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Measures how much the contour varies from a circle, see �gure 3.11a. The
function is implemented in Matlab

5.

(a) Circularity. Measures how much
the contour varies from a circle.

(b) Elliptic Variance. Measures how
much the contour varies from a
ellipse.

Figure 3.11: Illustration of circularity and elliptic variance.

Elliptic Variance The elliptic variance is related to circular variance or
circularity, but it allows elongation [51], such that the contour can be �tted
to an ellipse.

Evar =
σ2
rc

µ2
rc

(3.24)

The variable, µrc is the mean distance from the centroid of the ROI

µ =

(
µx
µy

)
to all points in the boundary.

µrc =
1

K

K−1∑
i=0

√
(pi − µ)

T
C−1 (pi − µ) (3.25)

where pi =

(
xi
yi

)
for i = 0, . . . ,K − 1 is all the points in the contour. K

is the number of samples around the contour. C is the covariance matrix:

C =
1

K

K−1∑
i=0

(pi − µ)(pi − µ)
T (3.26)

Finally σ2
rc is the deviation of the ellipse contour.

σ2
rc =

1

K

K−1∑
i=0

(√
(pi − µ)

T
C−1 (pi − µ)− µrc

)2

(3.27)

5The Matlab script is located in:
Matlab/Features/featureCircularVariance.m
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The elliptic variance measures how must the contour variates from an
ellipse, see �gure 3.11a. The function is implemented in Matlab

6.

Elliptic Fourier Elliptic Fourier is used in [49] and [18] to approximate
the contour by a number of harmonics. These harmonics are then used
as features to classify the shape of an object. The contour is de�ned as a
sorted list of point running in a clockwise direction around the boundary.
The truncated Fourier approximation of a closed contour is described by the
x and y coordinates.

xN (t) = A0 +
N∑
n=1

an · cos
(

2·n·π·t
T

)
+ bn · sin

(
2·n·π·t
T

)
yN (t) = C0 +

N∑
n=1

cn · cos
(

2·n·π·t
T

)
+ dn · sin

(
2·n·π·t
T

)
where t de�nes the distance to a certain point along the contour. The value
of tp is the distance along the boundary to a pixel (in the boundary) with
the index p. Traversing a full lap around the contour, will step p through
integers 1 to K, where K is the total number of points in the contour.
T is the distances around the whole boundary and is equivalent to T =
tK . The number of harmonic used in the boundary approximation is N .
For each harmonic n, four coe�cients are de�ned; an, bn, cn and dn. The
coe�cients A0 and C0 corresponds to a frequency of 0 simply giving the x
and y translation of the contour. The coe�cients of an, bn, cn and dn are
de�ned as:

an = T
2·n2·π2

K∑
p=1

∆xp
∆tp
·
(

cos
(

2·n·π·tp
T

)
− cos

(
2·n·π·tp−1

T

))
bn = T

2·n2·π2

K∑
p=1

∆xp
∆tp
·
(

sin
(

2·n·π·tp
T

)
− sin

(
2·n·π·tp−1

T

))
cn = T

2·n2·π2

K∑
p=1

∆yp
∆tp
·
(

cos
(

2·n·π·tp
T

)
− cos

(
2·n·π·tp−1

T

))
dn = T

2·n2·π2

K∑
p=1

∆yp
∆tp
·
(

sin
(

2·n·π·tp
T

)
− sin

(
2·n·π·tp−1

T

))
(3.28)

∆xp and ∆yp are the di�erence of adjacent values of respectively x and
y at point p. ∆tp is the distance between two adjacent points in the contour
at point p. The calculations of the coe�cients above have been implemented
in Matlab

7. The coe�cients can be calculated by two for-loops running
through all values of n and p. The calculations have, though, been vectorized

6The Matlab script is located in:
Matlab/Features/featureEllipticVariance.m

7The Matlab script is located in:
Matlab/Features/ellipticFourier.m
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(a)The 1st harmonic. (b)The 1st to 4th harmon-
ics.

(c)The 1st to 8th harmon-
ics.

(d)The 1st to 12th harmon-
ics.

(e)The 1st to 16th harmon-
ics.

(f)The 1st to 30th harmon-
ics.

Figure 3.12: A higher number of harmonics provides a better approximation of the
boundary.

and identical terms for constant value of n and p are only calculated once to
improve performance. Figure 3.12 shows how a higher number of harmonics
will present a better approximation of the boundary.

The elliptic Fourier coe�cients will obviously depend on translation, scale
and rotation of the contour, but they will also depend on the starting point
of the contour. Multiple normalization steps are therefore made on the
coe�cients. Translation is removed by simply excluding A0 and C0. In
Figure 3.13a and 3.13b the �rst 20 elliptic Fourier coe�cients are shown
with and without A0 and C0, respectively. Notice how the contour centre is
placed at the origin of the plot. To make the elliptic coe�cients invariant
to the starting point, it is shifted until it is aligned with a semi-major axis.
In [49] the starting point is shifted by doing the following transformation of
the coe�cients for each harmonic.[

a∗n b∗n
c∗n d∗n

]
=

[
an bn
cn dn

]
·
[

cos (nθ1) − sin (nθ1)
sin (nθ1) cos (nθ1)

]
(3.29)

where θ1 is the angular shift between the starting point and semi-major axis
of the contour.

θ1 =
1

2
arctan

(
2 (a1b1 + c1d1)

a1
2 + c12 − b12 − d1

2

)
(3.30)
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The equation might erroneously determine a shift to a semi-minor axis (in-
stead of the semi-major axis). The atan2 function in Matlab can be used
to avoid this:

θ1 =
1

2
atan2

(
2 (a1b1 + c1d1) , a1

2 + c1
2 − b12 − d1

2
)

(3.31)

To make the coe�cients invariant to rotation and scaling, the contour is
rotated to align the major axis of the contour to the x-axis and normalize
the size of the contour in accordance to the major axis of the ellipse. In [49],
rotation and normalization is made by doing a transformation and scaling
of the elliptic Fourier coe�cients for each harmonic.[

a∗∗n b∗∗n
c∗∗n d∗∗n

]
=

[
cos (ψ1) sin (ψ1)
− sin (ψ1) cos (ψ1)

]
·
[
a∗n b∗n
c∗n d∗n

]
· 1

E
, (3.32)

where ψ1 de�nes the rotation of the contour and is given by

ψ1 = arctan

(
c∗1
a∗1

)
(3.33)

the function atan2() should again be used for determining ψ1

ψ1 = atan2 (c∗1, a
∗
1) (3.34)

and E is the length of the major axis.

E =

√
(a∗1)

2
+ (c∗1)

2 (3.35)

The result after rotation and scaling is seen in Figure 3.13d. The semi-major
axis of the contour is rotated in the direction of the x-axis. Depending on
the initially direction, the contour will �point� along the x-axis in either
a positive or negative direction as demonstrated in Figure 3.14, where the
same image e.g. has been rotated 180◦. Fortunately as stated in [49] and
as seen in the Table 3.1 the only di�erence between the coe�cients is that
every even set of harmonics change sign. To be fully invariant to rotation,
the absolute value of every second harmonic is used. For all normalized and
rotated contours the value of a1, b1 and c1 is respectively 1, 0 and 0[49]. For
N harmonics the number of features is therefore not N · 4, but N · 4 − 3,
because the a1, b1 and c1 coe�cients are constant. The �rst 20 harmonics
are used providing 20 · 4 − 3 = 77 features. To keep the features rotation
invariant, all odd coe�cients and the absolute values of the even coe�cient
are used.

Total variation of Elliptic Fourier In [18] the approximated contours
are used as a measure of the serrations of a plant contour. The measure
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(a)Original contour.
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(b)First 20 harmonics without A0 and C0.
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(c)Shifting of starting point.
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(d)Rotation and scaling of contour.

Figure 3.13: Shows the di�erent normalization steps.
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(a)Rotated and scaled contour.
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(b)Rotated and scaled contour with a 180◦

rotation.

Figure 3.14: The elliptic coe�cients are not invariant to a 180◦ rotation.
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EF original image EF 180◦ rotated image
Harmc. a b c d a b c d

1 1.000 0.000 0.000 -0.343 1.000 0.000 0.000 -0.343
2 0.007 0.015 -0.065 -0.033 -0.007 -0.015 0.065 0.033
3 0.096 -0.006 0.019 -0.032 0.096 -0.006 0.019 -0.032
4 -0.001 0.014 -0.011 -0.020 0.001 -0.014 0.011 0.020
5 0.031 -0.005 0.003 -0.017 0.031 -0.005 0.003 -0.017
...

...
...

...
...

...
...

...
...

19 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000
20 0.000 0.000 0.001 0.000 0.000 0.000 -0.001 0.000

Table 3.1: The normalized coe�cients of two identical images rotated by 180◦. Coe�-
cients have of same absolute size, but even harmonics change in sign. Even
harmonics are marked by red.

is called the total variation of the elliptic Fourier boundary approximation,
TV H.

TV H =

N∑
n=2

max

(√
(xn−1 − xn)

2
+ (yn−1 − yn)

2

)
(3.36)

where N is the number of harmonics, xn and yn are the x and y coordinates
for the approximated boundary when using n harmonics. The expression
determines the maximum distance between all points in the boundary for the
n and n− 1 approximation of the contour. The maximum distance between
two approximations of the contour n and n − 1 is then summed for n =
2, . . . , N . A slightly di�erent measure has been proposed, where the mean
distance of all points between the two approximations of the boundary of n
and n−1 are calculated. The mean distance between the two approximations
of n and n− 1 is then summed for n = 2, . . . , N .

TV H2 =
N∑
n=2

mean

(√
(xn−1 − xn)

2
+ (yn−1 − yn)

2

)
(3.37)

The second measure do not only use the largest distance between k and k−1
approximations, but includes all distances between two approximations by
calculating the average distance.

Variance of elliptic Fourier using 5 and 30 harmonics We also pro-
pose a measure for serrations. Two approximations of the boundary are
determined with elliptic Fourier by using the 5 and 30 harmonics to make
respectively a coarse and a �ne approximation of the contour. A leaf with
a high level of serration would achieve two di�erent approximations of the
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contour, while a smooth leaf would achieve more similar contours. All the
distances between the two approximated contours are determined.

dEF5_30 =

√
(xEF5 − xEF30)

2
+ (yEF5 − yEF30)

2 (3.38)

The average distance and the variance distance are then determined.

µEF5_30 =
1

K

K∑
k=1

dEF5_30,k = mean
(
dEF5_30

)
(3.39)

σ2
EF5_30 =

1

K

K∑
k=1

(
dEF5_30,k − µEF5_30

)
= var

(
dEF5_30

)
(3.40)

The average distance µEF5_30 is used as a measure of scale, and the variance
is normalized by dividing by µEF5_30 to make it invariant to scale (as seen
with the features circularity and elliptic variance).

σ2
ET =

σ2
EF5_30

µ2
EF5_30

(3.41)

Distance between elliptic Fourier approximations We propose an-
other category of features based on normalized elliptic Fourier. The distances
between all points (x,y) on the boundary for the n and n−1 approximation
of the contour are determined for n = 2, . . . , N . The number of features can
be reduced, by only determining the distance between the approximations
for n = 2, 3, 5, 7, 10, 14, 18, 22, 26 harmonics.

dn =

√
(xn−1 − xn)

2
+ (yn−1 − yn)

2 (3.42)

The variable dn contains all distances between the boundaries for the n and
n − 1 approximation. Statistical data is then determined for n = 2, . . . , N
providing N−1 features. The mean distance between two subsequent bound-
ary approximations is given by:

EFdistMean(n) = mean (dn) , (3.43)

and the accumulated mean distance between two subsequent boundary ap-
proximations.

EFdistAccMean(n) =

n∑
k=1

mean (dk) (3.44)

A normalization is performed of the variance between two subsequent bound-
ary approximations by dividing with the mean distance:

EFdistV arN(n) =
var (dn)

mean (dn)
(3.45)
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(a)Imaginary plant
mask.

(b)Plant mask with
huge serrations.

(c)Plant mask
with medium
serrations.

(d)Plant mask with
small serrations.

Figure 3.15: Shows an imaginary plant mask with di�erent sized circular serraions.

Statistics of the distance between two subsequent boundary approximations
is expected to provide valuable information about the serrations or indenta-
tions of the leaf. The di�erent statistical values do not only provide a single
measure of serrations, but provides (presumably) multiple measures for ser-
rations of di�erent sizes. The assumption is that as the number of harmonics
is increased, the boundary approximations will approach the actual bound-
ary with a greater accuracy. Signi�cant shape characteristics are initially
�tted by a low number of harmonics, while smaller bumps and �nally small
serrations in the contour are �tted with a higher number of harmonics.

An illustration is provided with an imaginary plant mask with di�erent
(circular) serrations, see Figure 3.15. Figure 3.16 shows the mean distance,
the scaled mean distance, the accumulated mean distance and the normalized
distance variance. The plots are zoomed around the lower values to show
the di�erence between the di�erent plots.

Notice how the mean distance, the scaled mean distance and the normal-
ized variance respectively in Figure 3.16a, 3.16b and 3.16d shows no sudden
peaks for the �rst image, (a), two peaks in the start for the second image,
(b), one peak in the middle for the third image, (c) and �nally a peak at the
end for the fourth image, (d). The accumulated and scaled mean distance
have also been included in the feature set. As to reduce the number of fea-
tures included in the feature set, instead of increasing the order by one for
each feature, the order is increased in steps of three. This means that the
�rst feature will be the di�erence between order 1 and 4, the second will be
the di�erence between order 4 and 7 and so on.

Skeleton Skeleton features are features extracted from the skeleton of the
shapes. The skeleton can be de�ned as the set of centres of the largest discs
that can be contained within the contour and touching the boundary of the
contour at least two places[28].
The skeleton of a scentless mayweed can be seen in Figure 3.17.

From the skeleton, a skeleton distance vector,dskel, is extracted, which
is a vector consisting of the minimum Euclidean distance of all skeleton
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Figure 3.16: The distance statistics between two subsequent boundary approximations
for n = 2, . . . , 30.

Figure 3.17: Skeleton of scentless mayweed
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elements to the boundary of the leaf. From this vector four features are
extracted:

1. SkeletonDistanceMax is the maximum value of dskel

2. SkeletonDistanceMean is the mean value of dskel

3. SkeletonDistanceLength is the length of dskel. I.e. the number of ele-
ments in dskel.

4. SkeletonDistanceVariance is the variance of dskel.

3.2.4 Colour Features

Here a selection of colour based features, using the RGB image, will be
described.

Chromaticity of red, green and blue chromaticity is a combination of
hue and saturation [28, p. 399]. The average chromaticity for red, green and
blue is

avgr = 1
N

∑
Region

R
R+G+B

avgg = 1
N

∑
Region

G
R+G+B

avgb = 1
N

∑
Region

B
R+G+B

(3.46)

The chromaticity is calculated for all pixels within the plant region Region.
The number of pixels within the plant region is N.

Average excessive Green The average excessive green is used as a mea-
sure of green.

avgExG =
1

N

∑
Region

2G−R−B (3.47)

The average excessive green is calculated for all pixels within the plant
Region, where the number of pixels within the plant region is N .

Variance of RGB The variance is a measure of how �at the colour ap-
pears. For instance will plants with dark stems like Cleavers typically have
larger variation than Shepherd's-purse, where the colour of the stem is closer
to the average colour of the leaves.

V ar(R) = E
[
(R− µR)

2
]

V ar(G) = E
[
(G− µG)

2
]

V ar(B) = E
[
(B − µB)

2
] (3.48)
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3.2.5 Other Features

Stem thickness estimation After investigating images, it has been shown
that shepherd's-purse and scentless mayweed have a lot of common appear-
ances as can be seen in Figure 3.18. Therefore it will be desirable to �nd
features that are able to �nd di�erences between these two species. One such
di�erence, when looking at the images, is that the stem generally appears
to be thinner on shepherd's-purse than on scentless mayweed. The stem
thickness estimation feature, therefore, tries to estimate this thickness. The
design of this feature is based on dicotyledonous plants, and the quality of
the feature might change for other inputs, e.g. leaves, for which the feature
is not expected to provide much information.

(a) Scentless mayweed. (b) Shepherd's-purse

Figure 3.18: Scentless mayweed and shepherd's-purse.

To �nd the smallest thickness of a plant, the plant is being eroded by a
single pixel, until it splits into multiple parts. The plant will split in two
at the thinnest point and this point will often be found at the stem. By
counting the number of iterations before this happens, i.e. the number of
pixels to be removed before the plant breaks in two, we have a measurement
for the size of half the stem's thickness in pixels. The thickness of the stem
is then estimated as twice the number of iteration.
To bring the feature closer to being scale invariant, the feature is hereafter
scaled to the square-root of the area of the plant before it was eroded.

3.3. Feature Discussion and Conclusion

The project has implemented and documented a broad range of 50 dif-
ferent feature descriptors providing in total 261 subfeatures. These features
are selected so that they cover both shape, contour and colour features. An
overview of all the features is provided in Appendix F.
The 261 features have been calculated for the 2438 plants, the 3409 cotyle-
dons and the 1358 foliages so that they are ready for classi�cation. Some
features have originally been targeted for plants while others are targeted
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for leaves. However, all features have been calculated for both plants and
leaves.

The project has also proposed new features such as the stem thickness
estimation and the Elliptic Fourier distance features. Variations of existing
features have also been proposed, e.g. the distance transform, which has
become scale invariant while keeping important information. An evaluation
of the di�erent features is provided in Chapter 5.
Of these features, no texture-based features have been implemented. this is
due to the fact that a texture base is close to non-existing for the seedlings in
the provided database. Vein structure and texture also make high demands
on low image blurring and high resolution images complicating an in-�eld
implementation.
An alternative to using features to characterize the plants is to use active
shape models, which might provide interesting results, but such models have
not been included due to the time constraint of this project.
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Classifier

The objective of a classi�er is to take an unknown object described by a
set of features and match it to a certain category/class. The features there-
fore have to provide enough information describing the object to make the
match correct. To get information about the classes, the classi�er is ini-
tially trained by a set of objects belonging to the di�erent classes. A range
of classi�ers have been described in literature, but the following three have
been selected in this project; k-Nearest Neighbours (kNN), Support Vector
Machine (SVM) and Multivariate Gaussian (MVG).

The k-nearest neighbour classi�er is a simple algorithm which is able to
handle distributed feature clusters for the individual species. It is therefore
useful, as the leaf and plant appearances change over time and therefore
are expected to form multiple data clusters. The non-linear support vector
machine is a popular classi�er, which is useful in this project because of its
ability to handle high dimensional feature sets and overall provides good
performance for many classi�cation problems [64]. The third classi�er is the
Gaussian multivariate classi�er, in which the measurements are compared to
Gaussian distributions, archived from training. The bene�t of the Gaussian
multivariate classi�er is that it provides a likelihood values for the samples,
which tells how much they �t in the di�erent distribution. This likelihood
value can then be used as a measure for how certain a given classi�cation
is. Likewise, the k-nearest neighbour classi�er can provide a measure of
the classi�cation certainty from the distribution of samples nearby the test
sample.
Based on the 261 subfeatures determined for plants and leaves in Chapter 3,
the classi�ers will be trained and afterwards do a classi�cation of the plant
elements.
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Labelling As described in Section 2 The plants are divided into three
plant elements that can be classi�ed individually; the whole plant, single
cotyledons and single foliages. To distinguish between plant elements and
species a particular labelling is used. This is shown in Table 4.1. Whole
plants (0) are for the seven species labelled 1-7, the single cotyledon leaves
(100) are labelled 101-107 and the single foliage leaves (200) are labelled
201-207.

Species Maize Wheat Sugar beet Scentless mayweed Chickweed Shepherd's-purse Cleavers

Plant 1 2 3 4 5 6 7
Cotyledon 101 102 103 104 105 106 107
Foliage 201 202 203 204 205 206 207

Table 4.1: Labeling plant, cotyledon and foliage leaves for all species. Each plant ele-
ments is also speci�ed with a unique label 0, 100 and 200.

Confusion Matrix and classi�cation accuracies A confusion matrix
shows the performance of a classi�er and is determined by comparing the re-
sult of the classi�cation with the true label of each elements. In the following
section an example is provided to show how di�erent classi�cation accuracies
are determined based on the confusion matrix. An example of a confusion
matrix and the accuracy matrix is presented for plants in Table 4.2.

Spe. 1 2 3 4 5 6 7 Spe. 1 2 3 4 5 6 7

1 247 3 8 0 1 0 0 1 0.988 0.015 0.025 0 0.001 0 0

2 1 185 15 5 4 2 1 2 0.004 0.934 0.046 0.009 0.006 0.008 0.008

3 1 4 300 0 1 0 0 3 0.004 0.020 0.923 0 0.001 0 0

4 1 2 0 551 11 10 2 4 0.004 0.010 0 0.958 0.016 0.039 0.015

5 0 3 0 0 666 3 1 5 0 0.015 0 0 0.947 0.012 0.008

6 0 0 0 12 18 238 1 6 0 0 0 0.021 0.026 0.933 0.008

7 0 1 2 7 2 2 125 7 0 0.005 0.006 0.012 0.003 0.008 0.962

R
es

u
lt

 l
a
b
el

R
es

u
lt

 l
a
b
el

True label True label

Table 4.2: An example of a confusion and accuracy matrix.

The confusion matrix shows how often a given class is classi�ed correctly
and how often a class is incorrectly classi�ed as another class. An entry
in the confusion matrix is de�ned as n(k)

ij , where j is the number of times
that a true class have been classi�ed as class i for a classi�er k. An entry
in the accuracy matrix is determining by the conditional probability of the
classi�er ek(x) outputting i, given that the sample x is of class j.

P (ek (x) = ik|x ∈ cj) =
nij

(k)

M∑
m=1

nmj

(4.1)
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where M is the number of classes. The equation simply divides an index,
n

(k)
ij , in the confusion matrix by the sum of all the entries in column j.

In the example provided, it is seen that class 3 in Table 4.2 is classi�ed
correctly 300 times (93.4%) and incorrectly 25 times; eight times (2.5%) as
species 1, 15 times (4.6%) as species 2 and two times (0.6%) as species 7. The
diagonal of the accuracy matrix shows the individual classi�cation accuracy
of each species. The classi�cation accuracy of all species for the example are
collected in Table 4.3. The classi�cation accuracy of each plant element is

Plant Elements 1 2 3 4 5 6 7

Plant (0) 0.988 0.934 0.923 0.958 0.947 0.933 0.962 0.949

Cotyledon (100) 0.923 0 0.910 0.552 0.842 0.697 0.825 0.810

Foliage (200) 0 0 0.957 0.738 0.822 0.478 0.775 0.705

Total 0.837

Species

Table 4.3: The total classi�cation accuracy and the classi�cation accuracies of plant
elements and species.

shown in the last column. The classi�cation accuracy of a plant element is
the sum of the diagonal divided by the sum of the confusion matrix. The
total classi�cation accuracy of 83.7% for all plant elements is the sum of the
three diagonals divided by the sum of the three confusion matrices. The
total classi�cation accuracy is often used to provide a simple measure to
describe the performance of the classi�er or a set of features.

4.1. Feature scaling and feature struct

Feature Scaling The range of the feature values di�ers between the fea-
tures, e.g. the object area of the plant samples ranges between 503 and
350980 and the solidity ranges between 0.1350 and 0.9839. Not all classi�ers
are invariant towards features having di�erent ranges, and the feature val-
ues have therefore been shifted and scaled to �t in the range between 0 and
1 to optimize the performance of all classi�ers. The kNN classi�ers is e.g.
dependent on the range of features as a plant is identi�ed using Eucledean
distance in the feature space. Features that spread samples over a large area
(low density) will be less �weighted� in comparison to features that distribute
samples over a small area (high density).

The MVG classi�er handles features of any range as it �ts a given di-
mension/feature with a mean value and a variance.
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Feature Struct In the segmentation phase, all plants are stored in individ-
ual plant structs, but as a classi�er may be trained by features of all samples
this data structure is not very e�cient. All plant structs are therefore rear-
ranged into feature structs containing the feature values of all samples. One
feature matrix of the size F ×N is made of each of the three plant element,
where F is the number of features and N is the number of samples in the
given plant element. As the �nal identi�cation of a plant is determined on
the classi�cation of the plant and its leaves, the struct also contains infor-
mation on how the data is mapped between the two data structures.

4.2. Classifiers

In this section, the three selected classi�ers will be described. These are
the k-nearest neighbour classi�er, the non-linear support vector machine and
multivariate Gaussian classi�er.

4.2.1 k-Nearest Neighbours (kNN)

The k-nearest neighbours classi�er is a simple classi�er, in which an un-
known sample is classi�ed according to the majority of the k-nearest neigh-
bours from the training set. The distances are calculated as Euclidean dis-
tances, for which reason it is necessary to scale the features to the same
scale. In addition, the number of samples for each class in the training-set
must be equal to make the classi�cation fair for all classes.
Beside the simplicity of the classi�er, another advantage is that it is inde-
pendent of the distribution of the classes. This means that if e.g. cotyledons
and foliages of the same species are to be classi�ed at the same time, they
could be identi�ed even though they form two separated clusters in feature
space.

Besides the classi�cation result, the kNN-classi�cer is able to give a like-
lihood measure of how certain a given classi�cation is. This likelihood is
how many samples of class i that are present within the nearest j samples.
However, for small j, this measure will be imprecise because of a sparse
data basis. Likewise, for large j, the measure will be imprecise as the kNN
classi�er does not take the non-spherical distributions of the clusters of train-
ing samples into consideration, when using the Euclidean distance measure.
Therefore, j should be chosen as a compromise of these extrema.

Red is selected
for a 5 nearest
neighbour
classi�er

The number of k neighbours have impact on the selected class, as chang-
ing k might change the majority, depending on the distribution of the train-
ing set. Therefore it is desirable to �nd the optimal k for this dataset.
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Table 4.4 shows the classi�cation accuracy for plants, cotyledons and fo-
liages using all features of the given element. From it, it is seen that the
optimal k depends on whether whole plants or leaves are to be classi�ed,
where plants gets the highest classi�cation accuracy for k = 2 − 4, cotyle-
dons gets the highest classi�cation accuracy for k = 2 and foliages gets the
highest classi�cation accuracy for k = 2. These values are found by using
all features, so after the features reduction presented in Chapter 5, other k's
might be better. However, as it can be seen, increasing k does not change
the classi�cation accuracy dramatically, for which reason it is recommended
to use a k-value of at least 3 to decrease the e�ect of outliers.

k CA plant CA cotyledon CA foliage

1 0.933 0.875 0.849
2 0.932 0.868 0.852
3 0.933 0.864 0.846
4 0.940 0.872 0.852
5 0.935 0.868 0.842
6 0.934 0.868 0.828
7 0.928 0.866 0.832
8 0.931 0.865 0.839
9 0.925 0.856 0.815
10 0.924 0.859 0.801

Table 4.4: Classi�cation accuracy (CA) of k-nearest-neighbours using k=1 to 10 for
whole plants, cotyledons and foliages using all features. The best classi�cation
accuracies are marked with red

4.2.2 Support Vector Machine (SVM)

In this section the Support Vector Machine-classi�er (SVM) will be de-
scribed. For a dataset consisting of two classes, there may be several hyper-
planes, which classi�es the datasets evenly good. The rationale behind SVM
is to �nd the single hyperplane g (x) that separates the two clusters for the
classes with the largest margin to the data. The hyperplane is given by[65]:

g (x) = wTx + w0 (4.2)

where x is the feature data points labelled to belong to one of the two
classes ω1 or ω2. w is the direction and w0 is the o�set of the plane.

The support vectors are the points with the minimum margin to the
hyperplane[65], where the margin from the data to the hyperplane is de�ned
as twice the smallest distance from a single point in the dataset to the
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hyperplane as illustrated in Figure 4.1. These distances are given by:

z =
|g (x)|
‖w‖

(4.3)

To make the plane scale-independent, the plane will be scaled, such that
the margin for ω1 is 1 and thus the margin for ω2 is -1. With this scale,
all feature-points on the ω1-side of the plane will have a distance larger or
equal to 1, where the feature-points on the ω2-side of the plane will have a
distance smaller or equal to -1.
The aim now is to maximize this margin with respect to w and w0 by
minimizing the norm of w. Though to avoid calculating the squareroot,
‖w‖ is replaced by 1

2‖w‖
2, resulting in Eq.4.4

minimize: J (w, w0) = 1
2‖w‖

2

subject to: yi
(
wTxi + w0

)
> 1 , i = 1, 2, . . . , N

(4.4)

where yi is the label of xi which is either 1 for ω1 or -1 for ω2.
Until now it is supposed that the two classes are separable, which often
cannot be assumed. Therefore a slack variable ξi is related to each datapoint
xi to allow overlapping datasets. The cost function is then de�ned as:

minimize: J (w, w0, ξ) = 1
2‖w‖

2
+ C

N∑
i=1

I (ξi)

subject to: yi
(
wTxi + w0

)
> 1− ξi , i = 1, 2, . . . , N ∧ ξi > 0

(4.5)

where

I (ξi) =

{
1 ξi > 0
0 ξi = 0

(4.6)

The method described until now is an ideal linear classi�er. The advan-
tage of the Support vector machine is the ability to use a non-linear kernel
to map the input features x in space Ri to a higher dimensional space Rk
in which the data can be separated using a linear classi�er as illustrated in
Figure 4.1.

The mapping should be done in a way such that the classes can be sep-
arated satisfactory. Several kernels exists, but a good choice of mapping is
the Gaussian radial basis function (RBF) [67, 65].

K (x, z) = e(−γ‖x−z‖
2) (4.7)

Multiclass case The SVM classi�er is only capable of classifying two
classes, which o� course is not useful when classifying multiple plant species.
Therefore the classi�er should be extended to handle the multi-class case.
There are two methods for doing this [65, p. 217]; the one-against-one and
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Figure 4.1: Unwrapping of data to make it separable using a linear classi�er. (after [66])

the one-against-all method. In the one-against-one method a kernel is made
for each pair of classes. This means that for C classes, there will be 2

C!(2−C)!

SVM kernels. The input will then be classi�ed using all these two-class clas-
si�ers for which there will be a lot of estimated classes. Among all these
estimated classes the class that has been chosen the most will be chosen as
the �nal class. In case multiple classes are chose equally many times, a new
round start, but just with the remaining classes.

Another method for a multi-class SVM classi�er is the one-against-all
method, in which the kernels of K classi�ers must be determined for C
classes. For each class c a two-class problem is set up: Class c and the
others. The test sample is then tested in the k classi�ers which hopefully
classi�es the sample as �other� in all cases but one, and the sample is clas-
si�ed as that class.
In the case that multiple classes are selected, there are no best solution as
the distance from the test sample to the separating hyperplane is only true
and fair in the two-class example, because the placement of the hyperplane
in the one-against-all method also depends on all the false classes.
According to [68] there are no signi�cant deviation for any of the two meth-
ods, when used for optical character recognition. Therefore the one-against-
one method is preferred, as it almost always �nds a unique result.

Finding optimal parameters The optimal parameters for the RBF ker-
nel classi�er can be found using grid-search for γ and C. An evaluation of
each point in the grid is, depending on the resolution of the grid, a computa-
tionally expensive procedure taking up hours in Matlab , but should only
be determined once for the given feature set[67].
Because the SVM classi�er is only build for two classes, the parameters
would preferably be calculated for each og the one-against-one classi�cation,
but for convenience, the parameters with the overall best performance will
be found and used in all cases.
It should be noticed that the SVM classi�er that comes with Matlab have
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Figure 4.2: Grid search for optimal parameters for plants.

a slightly di�erent notation for the RBF kernel than described above, as it
instead of γ takes an input σ given by

σ =

√
1

2γ
(4.8)

One task of this project is to �nd the optimum feature subset for classi�ca-
tion. However, this would require the parameters to be calculated for each
feature combination, whereby the non-linear SVM classi�er might not be the
best choice. Nevertheless, for the purpose of demonstration, the parameters
have been calculated for the full feature set of whole plants, which is shown
in Figure 4.2. This leads to the following parameters: γ = 0.0039, C = ∞.
However, these parameters should be re-calculated when the optimal feature
subset has been found in Chapter 5.

4.2.3 Multivariate Gaussian (MVG)

The Multivariate Gaussian classi�er (MVG) assumes that the densities of
the samples are distributed in multivariate Gaussian distributions and is the
generalized case of a univariate Gaussian distribution for d > 1[65]. In the
training of MVG each class is matched to a multivariate normal distribution
by determining the mean value µ and a covariance matrix

∑
. For class j

containing N samples x of d dimension/features, the mean value is obtained
by

µj =
1

N

N∑
k=1

xk (4.9)
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The covariance matrix
∑
j of class j with a size d× d is obtained by:

∑
j
=

1

N

N∑
k=1

(
xk − µj

) (
xk − µj

)T
(4.10)

The conditional probability of being class ωj given a test sample xnew is
determined by Bayes rule.

P (ωj |xnew) =
P (ωj)P (xnew|ωj)

P (xnew)

where P (ωj) is the prior probability, P (xnew) is the evidence and P (xnew|ωj)
is the likelihood. For M number of classes the sample xnew is classi�ed as
the class with the highest probability.

c (xnew) = arg max
1≤j≤M

(P (ωj |xnew)) (4.11)

As the evidence is independent on the class ωj , it becomes a constant value.
Assuming that the same amount of samples are presented in each class the
prior also becomes a constant for all classes. As a sample is elected as
the highest value and not the size, the likelihood can simply be used. The
likelihood is de�ned as the conditional probability for a test sample xnew
given the multivariate classi�er j is

P
(
xnew|µj ,Σj

)
=

1√
(2π)

k |Σj |
exp

(
−1

2

(
xnew − µj

)T
Σ−1
j

(
xnew − µj

))
(4.12)

The advantage of the MVG is that the likelihood for a given class j can be
used in the classi�er fusion.

likelihood(j) = P
(
xnew|µj ,Σj

)
(4.13)

A drawback of the MVG classi�er is that it is dependent on the dimen-
sionality of the features space or formulated di�erently highly in�uenced by
the curse of dimensionality. Increasing the number of dimensions/features
will increase the volume of the features space exponentially and therefore
decrease the density of the data - making it statistically insigni�cant.

4.3. Cross-Validation

The total number of samples are divided in a test and a training set to
separate samples used in the training of the classi�er and samples used in the
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validation of the classi�er. The reason for this is that a classi�er might over-
�t the samples of the training set, providing little space for variation in the
new samples and consequently �tting them into the wrong class. Meaning
that an over�tted classi�er might have a classi�cation accuracy of a 100%,
if the classi�er is also validated with the training set, but failing to classify
new samples from the test set. Dividing test and training set in portion of
e.g. respectively 10% and 90% of the data set, would solve this problem, but
also reduce the number of samples validating the classi�er remarkably. The
validation set can though be increased by using cross-validation. The cross-
validation procedure divides the data in k equally sized portions. A training
and a validation is then performed k individual times and in turn choosing
one of the k portions as the test and the remaining portions as the training
set. The k-fold validation will reduce the variance by averaging over the k
di�erent training and classi�cations, which thereby increases the reliability
and reduces over-�tting. The result will therefore have a lower variance than
a single hold-out set estimator. The size of the test set is typically set to
10% of the size of the total dataset size, as it has proven good result in many
applications [69, p. 484]. To make sure that all data appears in a train-set
once, k should in this case be set to 10.

To make the datasets as independent as possible, the test- and training
sets are created such that leaves from the same plant only appear in either
the training set or the test set, but not mixed. The reason for doing this
is that leaves from the same plant have the same growth conditions, and
therefore might be close to identical compared to other leaves. Therefore
there is a probability of over-�tting the classi�er because of this correlation,
which of course should be avoided.
However, there is still a problem of providing total independence of the dif-
ferent plants in the dataset as the same plant is recorded in di�erent growth
stages. Selecting a plant in the test set, will not remove the same plant in dif-
ferent growth stages from the training set. Removing this dependency across
growth stages is though not easily achieved. Even though plants are �xed in
the seeding position, the trays are photographed with di�erent translation
and rotations and some plants are removed due to pruning.

4.4. Result of classification

The performance of the di�erent classi�ers are simply determined by the
classi�cation accuracy using all features as shown in Table 4.5. The MVG
is useless at this stage as it performs worse than a classi�er doing a random
identi�cation of species! The result is though notable as it demonstrate
how the MVG classi�er is a�ected by a feature space of high dimensions.
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MVG kNN SVM

Plant Element CA Plant Element CA Plant Element CA

Plant 0.316 Plant 0.939 Plant 0.949
Cotyledons 0.063 Cotyledons 0.866 Cotyledons 0.745
Foliage 0.044 Foliage 0.840 Foliage 0.741

Total 0.145 Total 0.886 Total 0.813

Table 4.5: Classi�cation accuracy (CA) of the three classi�ers using all features. The
total CA is weighted by the number of samples of plants, cotyledons and
foliages

The kNN classi�er performs overall the best with a 7.3 percentage point
lead compared to SVM when looking at the total classi�cation accuracy.
However, SVM is slightly better at classifying plants. The classi�cation
results above are not directly related to the performance of the classi�ers
in the �nal system or in general as this depends on the number of selected
features and the distribution of samples in these features. The objective of
presenting these results - before feature selection and reduction - is that the
classi�ers should not be used naïvely.

4.5. Classifier Discussion and Conclusion

The di�erent classi�ers have been documented and tested on the whole
feature set, showing the temporary results at this stage. The MVG classi-
�er is intended for single clustered Gaussian distributions, and can be used
directly on the feature set without optimizing any parameters. The MVG
performs badly, but the justi�cation of using MVG is that it returns a mea-
sure of likelihood for each classi�cation and not just for the resulting class.
The kNN classi�er has the ability of handling a class consisting of multi-
ple clusters of di�erent distributions (i.e., not only Multivariate Gaussian
distributions). On top of this, it is robust to a high dimensional features
space achieving the highest classi�cation accuracy for all features. The kNN
classi�er must be optimized in order to achieve the optimal k value for the
three plant elements. A disadvantage of the classi�er is that it does not
provide a measure of likelihood. Conversely, the advantage of SVM is that
is uses a non-linear kernel to map features into a higher dimensional space,
providing the ability of separating classes more optimally by a linear clas-
si�er. A disadvantage of SVM is that a brute force optimization method is
needed to �nd the SVM kernel for each plant element making the usage of
SVM very time consuming. An actual evaluation of the three classi�ers can
not be made at the given stage. Such an evaluation would depend on the
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characteristics of the �nal subset of features, which is determined through
a feature selection method or some form of dimension reduction method.
The subject of feature selection and dimension reduction is described in the
following section, Chapter 5,
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Chapter5
Feature Selection and Dimension
Reduction

In this chapter methods for feature selection and feature extraction are de-
scribed. Feature selection is the process of reducing the number of features
to an optimal subset, where feature extraction is the process of transforming
existing features into a lower dimensional space. The reason for doing this is
that some classi�ers are sensitive to the number of features compared to the
size of the dataset, for which reason it is desirable to decrease the number
of features to avoid over�tting.
This phenomenon is described in literature as the curse of dimensionality
[65, p. 55]. Expressing that an increase of dimensions/features will increase
the volume of the features space lowering the density of the data or providing
a sparse presentation of the data, leading some classi�er to over�t the data.

Some features might be correlated or simply add noise in the features
space and therefore not provide extra information to the discrimination pro-
cess. Features can therefore by left out without losing information or to
improve discrimination. In addition to this, decreasing the feature set will
decrease the required computational power for a real-time implementation.
However, timing will not be considered in this study, as the level of optimiza-
tion for the individual features makes the computation times incomparable.
Methods for �nding the optimal subset have to be investigated as the num-
ber of possible combinations for subsets of size k for n features is given

by n!
k!(n−k) =

(
n
k

)
. As the optimal feature subset may be of any size

between 1 and n the total number of possible feature subset are C (n) =∑n
k=1

(
n
k

)
. For a set of 261 features the total number of possible feature
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sets are C (261) = 3.71 · 1078. Running through all combinations of fea-
ture subset would be impossible within the time frame of this project1 and
another method is needed to select a good feature subset.

It should be noticed that all results are relative to the given dataset. This
means that features that perform well in this study, may perform worse in
others and vice versa. For instance some colour-features gives good clas-
si�cation results, which should not be expected for plants in the �eld, for
which the colour variation will be bigger due to di�erent growth conditions.
Other features, like object-area, are very dependent on a static height of the
camera, which also cannot be expected in the �eld.
Some features are also strongly dependent of a good segmentation where
others are less sensitive. For instance the colour features will be almost un-
changed for a mess of overlapping leaves of the same kind, where the Fourier
descriptors for instance will change completely. The best features are there-
fore not an absolute subset, but depends of the dataset present.

5.1. Related work in the field of feature selection methods

Several feature selection algorithms exists, which overall can be divided
in two groups: Those that tries to increase the classi�cation accuracy of the
object to be classi�ed and those that tries to minimize the mutual informa-
tion or correlation between features.
Features from the �rst group includes the forward selection algorithm (also
known as the greedy-like search algorithm) which chooses the feature that
bene�ts the most in the next iteration without looking ahead, this is a simple
method, but the risk of getting trapped in a local maxima is high [70, 71].
Another method is the feature elimination algorithm which discard the fea-
tures with the least importance. However, this method has the limitation
that it do not re-evaluate features and also has a tendency to get trapped in
local maxima [71]. A third method is to use the Genetic algorithm for fea-
ture selection [70, 72, 16]. This selection methods has been evaluated against
the forward selection method by [70], where it provides slightly better re-
sults but at the expense of increasing the computational e�ort. Simulated
annealing can also be used for feature selection, which have been done by
[73], to whom it had provided good results when reducing large feature sets.
Methods that try to decrease the feature correlation include the Pearson
product-moment correlation coe�cient [74]. Feature selection by decreasing
the mutual information has been described by [75].

1 Assuming that it takes 1ms to evaluate a features subset the time of testing all subset
would require 1.17 · 1068 years. ¨̂
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5.2. Feature Selection and Reduction Methods

The following section describes 5 di�erent features selection methods.
Four of the feature selection methods; individual feature performance, for-
ward selection, recursive feature elimination, and recursive feature elimina-
tion using MDA will not provide a single optimal subset, but rather a ranking
of all the features. The genetic algorithm di�ers from the others as it op-
timizes for a constant number of features. The features selection methods
do solely perform selection based on the kNN classi�er as the processing
time of just this one classi�er takes weeks. The kNN classi�er is used as
it achieves much better accuracies than MVG and because the SVM takes
hours to optimize the kernel for a single feature subset.

5.2.1 Individiual Feature Performance

A simple way to measure the performance of features, is to determine
how individual features perform on the given database. The performance of
a feature can be described by di�erent measure, but as the performance is
ultimately determined by how well it helps a certain classi�er to discriminate
classes, the classi�er can be included in this process. In the following section
the kNN classi�er is used to determine individual feature performance solely
by the classi�cation accuracy. A Matlab script2 has been implemented to
determine the classi�cation accuracy of all features individually. Thereby
meaning that a feature descriptor containing multiple features such as Ellip-
tic Fourier and Distance transform are split into many individual features.
The result of the Matlab script is stored in a spreadsheet3 to easily treat
and sort the results. In Table 5.1 the top 20 ranking features have been listed
based on classi�cation accuracy. The classi�cation accuracy is the average
classi�cation accuracy of the three plant elements.

The table shows that the highest ranking features are the �ve colour
based features. The list also includes nine variations of the DistTransform,
and in ranking order the Sphericity, HuMoments1, Compactness, RatioOf-
PrincipalAxes, Eccentricity and DistTransformMean. Three additional ta-
bles in Appendix G show the 20 highest ranking features for the three plant
elements. The appendix provides an important fact of the project, namely
that features perform di�erently for the three plant elements. Besides the
raw features, the Matlab script mentioned above also stores the classi�ca-
tion accuracy of feature descriptors, which consist of multiple subfeatures.
Table 5.2 shows the classi�cation accuracies of all the feature descriptors
containing multiple features without using dimensionality reduction. The

2The Matlab script is located in: Matlab/Classifiers/Decision3/Demo_

ClassifyAndStoreResults.m
3The spreadsheet is located in: Database/Result/classifyResultknn25-Nov-2013
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Ranking Feature no. Feature Name CA

1 17 AverageChromaticityBlue 0.521
2 19 AverageChromaticityRed 0.520
3 18 AverageChromaticityGreen 0.504
4 134 VarRGB 0.501
5 20 ExcessGreen 0.486
6 77 DistTransformRS_scaledAreaRoot9 0.482
7 120 DistTransformLP_scaledAreaRoot2 0.477
8 76 DistTransformRS_scaledAreaRoot8 0.477
9 119 DistTransformLP_scaledAreaRoot1 0.475
10 78 DistTransformRS_scaledAreaRoot10 0.472
11 75 DistTransformRS_scaledAreaRoot7 0.471
12 73 DistTransformRS_scaledAreaRoot5 0.458
13 74 DistTransformRS_scaledAreaRoot6 0.452
14 23 Sphericity 0.449
15 6 HuMoments 0.447
16 16 Compactness 0.446
17 79 DistTransformLP_Sort1 0.444
18 29 DistTransformMean1 0.443
19 26 FormFactor 0.443
20 72 DistTransformRS_scaledAreaRoot4 0.442

Table 5.1: The average classi�cation accuracy (CA) of the plant elements of the indi-
vidual features, using kNN, k=4

classi�cation accuracy is the average classi�cation accuracy of the three plant
elements.

The table shows interesting results. First of all these more complex fea-
tures shows better classi�cation accuracies between 0.464 and 0.779, which
means that the 15 best of these feature combinations provides a better per-
formance than the best single feature, shown in Table 5.1. It also shows
that variations of the distance transform, perform very well, as they account
for 5 of the top 10 features. The last features within the top 10 features
are features related to the chromaticity of the plants, which should not be
expected to perform as well under varying illumination. Futhermore, the
table shows how the di�erent variations of a feature descriptor are ranked
according to each other. The proposed DistTransformLP_scaledAreaRoot
performs better than all other distance transform features by more than 5
percentage points. The EllipticFourierAbs and the variations of the Elliptic
Fourier distance have performances between 0.501 and 0.668 and thus most
of the features performs better than the well known HU moments. A table
is provided in Appendix H showing the ranking of features for the di�erent
plant elements.
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Ranking Feature no. Feature name CA

1 33 DistTransformLP_scaledAreaRoot 0.779
2 30 DistTransformLP_SortScaled 0.726
3 32 DistTransformLP_AccScaled 0.712
4 31 DistTransformLP_Acc 0.693
5 28 DistTransformRS_scaledAreaRoot 0.685
6 29 DistTransformLP_Sort 0.685
7 27 DistTransformRS_AccScaled 0.673
8 43 EllipticFourierAbs 0.668
9 24 DistTransformRS_Sort 0.640
10 26 DistTransformRS_Acc 0.629
11 46 EFdist 0.615
12 25 DistTransformRS_SortScaled 0.597
13 48 EFdistAcc 0.567
14 47 EFdistScaled 0.546
15 6 HuMoments 0.511
16 49 EFdistAccScaled 0.507
17 50 EFdistVar 0.501
18 41 MinPlantThickness 0.464

Table 5.2: The average classi�cation accuracy (CA) of feature descriptors containing
multiple features using kNN, k=4

The evaluation of individual features provides an understanding and in-
dication of how well a feature performs and how the di�erent variations of
a feature descriptor are ranked according to each other. Determining the
optimal subset by purely using features with the highest classi�cation ac-
curacy will in most cases not provide an optimal solution as many features
are correlated. An example of correlated features might be the 10 di�erent
variations of the distance transform as they all are derived from the distance
transform.

5.2.1.1 Evaluation of proposed features

The following provides a small explicit evaluation of the proposed vari-
ation of the distance transform, the elliptic Fourier distance and the stem
thickness estimator.

Evaluation of features derived from the distance transform In this
section the features extracted from the distance transform will be presented.
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In [17] four features sets are extracted from the distance transform and tested
on nightshade and corn�ower at growth stage BBCH 12. These four sets are:

• dsort, which is the sorted distance vector.

• dscaled, which is a normalized version of dsort.

• daccu, which is an accumulated version of dsort.

• daccuscaled, which is an accumulated and normalized version of dsort.

These four vectors are represented in two ways; either in re-sampled
versions, where 10 equidistant samples are taken from each vector, or by
using coe�cients for a 10th order Legendre �tted polynomial. By using the
last approach, [17] achieves a classi�cation accuracy of 96.25% for dsort and
daccuscaled, and a classi�cation accuracy of 97.5% on dscaled using Legendre
polynomial coe�cients as features.
In this study, seven plant species are available, which are present at di�erent
growth stages, but which do not include nightshade and corn�ower. It is
therefore interesting to see how well these features perform on this, larger
dataset. The project propose two variations of the distance transform as
described in section 3.2.2 ,dscaledAreaRoot. Table 5.3 shows the average clas-
si�cation accuracy for all plant elements and the classi�cation accuracy of
plant, cotyledon and foliage using the k-Nearest Neighbours (kNN) classi�er
using k = 4. The features have been ranked according to the classi�cation ac-

No. FeatureName Plant Cotyledon Foliage Total

Rank CA Rank CA Rank CA Rank CA
33 DistTransformLP_scaledAreaRoot 1 0.803 1 0.762 1 0.777 1 0.779
30 DistTransformLP_SortScaled 2 0.740 2 0.709 2 0.743 2 0.726
32 DistTransformLP_AccScaled 3 0.729 3 0.697 3 0.719 3 0.712
31 DistTransformLP_Acc 6 0.711 4 0.677 4 0.703 4 0.693
28 DistTransformRS_scaledAreaRoot 5 0.718 5 0.659 5 0.692 5 0.685
29 DistTransformLP_Sort 4 0.722 6 0.656 6 0.691 6 0.685
27 DistTransformRS_AccScaled 7 0.699 7 0.649 7 0.687 7 0.673
24 DistTransformRS_Sort 8 0.663 8 0.621 9 0.647 8 0.640
26 DistTransformRS_Acc 9 0.633 9 0.615 8 0.654 9 0.629
25 DistTransformRS_SortScaled 10 0.594 10 0.583 10 0.638 10 0.597

Table 5.3: Classi�cation accuracies (CA) for a 4-nearest neighbour classi�er using the
distance transform features.

curacy that they provide, showing that DistTransformLP_scaledAreaRoot
performs best for all plant elements. The table shows that the features are
ranked relatively similar for the di�erent plant elements. The Legendre poly-
nomial variation (LP) of the distance transform generally performs better
than the resampled (RS) variation. Classi�cation accuracies of the di�erent
plant species are also presented in Appendix I using the kNN with a k value
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Evaluation of proposed features
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Figure 5.1: Boxplot of smallest thickness of all seven species, evaluated on whole plants

of respectively 4, 1 and 1 for plant, cotyledon and foliage leaves. The clas-
si�cation accuracy is much lower than the results presented in [17] as �ve
additional plants have been included, which at the same time are present at
di�erent growth stages.

Evaluation of the stem Thickness estimator Here the minimum stem
thickness-feature, will be evaluated. The feature was made with the pur-
pose of discriminating scentless mayweed from shepherd's-purse, as the ap-
pearences of them are very alike, except that scentless mayweed tends to have
a slightly thicker stem than shepherd's-purse. To show the performance of
this feature alone, the classi�cation accuracy for each of the seven species is
shown in Table 5.4. From this it is clear that this feature is not very valuable

Species

Maize Wheat Sugar beet Scentless mayweed Chickweed Shepherd's-purse Cleavers Total

0.360 0.071 0.206 0.414 0.464 0.126 0.146 0.323

Table 5.4: Classi�cation accuracies (CA) for a 4-nearest neighbour classi�er using the
minimum stem thickness

on its own.
To demonstrate the ability of the feature to discriminate each of the species
from each other, a boxplot have been made in Figure 5.1. From this it can
be seen that this feature is able to distinguish most scentless mayweed from
shepherd's-purse plants. However, there are still an overlap, which means
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Chapter 5. Feature Selection and Dimension Reduction

that this feature alone is not enough to discriminate the two species. When
looking at all species, maize, scentless mayweed and cleavers do in general
have thick stems compared to the four other species, which seems reasonable
when looking at the samples in shown in Appendix O.
A thing that should be noticed is that for all species, there are samples with
a scaled thickness close to zero. This is a consequence of rough leaf edges
from the segmentation, which means that the plants are divided in two parts
after only few erosions. Therefore, there are room for optimization, so that
such cases can be avoided.

Elliptic Fourier Distance Based on the Elliptic Fourier, di�erent El-
liptic Fourier distance features have been proposed in Chapter 3. The El-
liptic Fourier distance features are distance statistics between subsequent
approximations of Elliptic Fourier for an increasing number of harmonics.
The classi�cation accuracies are presented in Table 5.5, showing that EFdist

No. FeatureName Plant Cotyledon Foliage Total

Rank CA Rank CA Rank CA Rank CA
47 EFdist 1 0.698 3 0.519 1 0.708 1 0.615
49 EFdistAcc 2 0.585 2 0.526 3 0.637 2 0.567
48 EFdistScaled 3 0.579 1 0.527 4 0.535 3 0.546
50 EFdistAccScaled 4 0.533 4 0.486 5 0.510 4 0.507
51 EFdistVar 5 0.509 5 0.425 2 0.679 5 0.501

Table 5.5: Result of Elliptic Fourier distance features

generally performs the best with a classi�cation accuracy of 0.615 followed
by EFdistAcc, EFdistScaled, EFdistAccScaled and �nally EFdistVar. The
EFdist performs worse than most distance transform features and the el-
liptic Fourier features, but will still provide a good discrimination between
classes. As the EFdist is based on Elliptic Fourier, they are likely to be
highly correlated. Assuming that they are not highly correlated, they will
combined improve discrimination. The classi�cation accuracy of the features
Elliptic Fourier, EFdist and the features of Elliptic Fourier+EFdist combined
is presented in Table 5.6. The classi�cation accuracy is improved by 2.2

No. FeatureName Plant Cotyledon Foliage Total

47 EFdist 0.698 0.519 0.708 0.615
43 EllipticFourierAbs 0.668 0.725 0.612 0.711

43+47 EFdist+EllipticFourierAbs 0.747 0.723 0.731 0.733

Table 5.6: The classi�cation accuracy of EFdist and Elliptic Fourier, individually and
combined to investigate correlation.
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Multiple Discriminant Analysis (MDA)

percent points, indicating that EFdist provides additional discriminating in-
formation especially for Plants and foliage leaves.

5.2.2 Multiple Discriminant Analysis (MDA)

Multiple Discriminant Analysis (MDA) is a dimension reduction method
that takes c classes of d dimensions/features and reduces the number of di-
mensions to a (c − 1) dimensional space. MDA assumes that the feature
dimension d is larger or equal to the number of plant species c that are be-
ing classi�ed[69].
In this speci�c case it will reduce the number of features from 261 to only
6 features as the data set contains 7 classes/species. The method is highly
related to PCA described in Appendix B as it also reduces the number of di-
mensions by taking a linear combinations of all the features. The di�erence
is that PCA �nds the projection to a lower dimensions space that keeps the
highest variance of the data, while MDA �nds the projection that keeps the
highest discrimination between classes. MDA keeps discrimination between
classes by maximizing the distance between classes, while minimizing the
variance within each class. An example is illustrated in Figure 5.2. The
objective is to �nd a projection w (for two dimensions onto a line) providing
the highest discrimination. The projected mean for �rst and second class is
denoted µ̃1 and µ̃2, while the projected variation for the �rst and second class
is denoted σ̃2

1 and σ̃2
2 . MDA will optimize discrimination by making an pro-

jection that will maximize the distance between projected means |µ̃1 − µ̃2|,
and minimizing the sum of the projected variance of the two classes σ̃2

1 + σ̃2
2 .

The discrimination criteria makes the MDA linear reduction method more
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Figure 5.2: An example of MDA discriminating two classes in a two dimensional space.
Discrimination is maximized by increasing distance between projected means
|µ̃1 − µ̃2|, and minimizing the projected variance of the two classes σ̃2

1 and
σ̃2
2 .

optimal than PCA as the goal is to classify at a lower dimensional feature
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Chapter 5. Feature Selection and Dimension Reduction

space. The actual derivation of MDA is described in Appendix C. An imple-
mented Matlab function4 calculates the linear projection to transform the
features into a (c−1) dimensional space. The linear projection w determined
by MDA is then used on each plant sample x

y = wTx, (5.1)

to make a plant sample y of lower dimensionality. One advantage of MDA is
that it provides great visualization of data of high dimensionality. Figure 5.3
shows the three dimensions of MDA that provides the highest discrimination
between classes. From this it is seen how the di�erent classes are more
or less divided into separated clusters. Figure 5.4 shows the histogram
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Figure 5.3: 3D plot of the 3 most discriminating dimensions of the MDA of plants.

and Gaussian distributions of the data for each dimension of the MDA.
Starting with the dimension of highest discriminant power in the top left
corner, the next highest in top right corner and so forth down to the bottom
right corner. It is seen how the distributions overlap each other more as
the dimension becomes of minor discriminant power. The classi�cation
accuracies5 are determined for MVG and the kNN classi�ers (k=4), when
using all features without any dimension reduction and when using MDA
and PCA (6 dimensions)6. The results show how the feature reduction
improves the result of the classi�cation. The MVG is highly a�ected by the
number of features, resulting in a very low classi�cation accuracy of 0.108
when no dimensionality reduction is made. In the given case the feature
space contains 261 dimensions requiring a must greater data set. Reducing

4The Matlab script is located in: Matlab/Classifiers/myMDA_Features.m
5The Classi�cation accuracy is a weighted average of the three plant elements, depending
on the number of samples of the elements

6SVM has been left out of the table as the optimal sigma and a box constraint must be
found for each plant element and when using no feature reduction and when using MDA
and PCA for 6 dimensions.
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Figure 5.4: Showing how the classes are discriminated in the 6 dimensions of MDA.
Starting with the highest discriminant power in the top left corner, the
second highest in the top right position and so forth.

Classi�er Dimension Reduction
None PCA MDA

MVG 0.108 0.566 0.833
kNN 0.885 0.825 0.869

Table 5.7: Classi�cation accuracy of classi�eres for all features when using no dimension
reduction and when using MDA and PCA (6 dimensions).

the features space to 6 dimensions with PCA improves the result to 0.566.
Reducing the features space with MDA to maintain discrimination between
classes improves the classi�cation accuracy to 0.833. The kNN classi�er
performs well for all settings showing high robustness with samples of high
dimensionality. MDA will though provide a remarkable improvement to
kNN as the a�ect of noisy or bad features have been minimized in the MDA
reduction of the data. MDA is though not an optimal feature reduction
method as it will have the chance of removing important information and
worsen the classi�cation accuracy.

5.2.3 Forward Selection

In the forward selection algorithm, a list of features is selected in an
iterative process in which the feature that adds most to the classi�cation

97



Chapter 5. Feature Selection and Dimension Reduction

accuracy of the existing feature list is added to the feature list. To rank all
features, the algorithm will have as many iterations as there are features. In
each of the iterations a classi�cation is made for each of the features that
have not been selected yet, in combination with the ones that have been
selected in earlier iterations. The principle is shown in Algorithm 2.

Algorithm 2: Forward feature selection algorithm

var featurelist0 is empty;
var remainFeatures = Allfeatures;
for i← 1 to NAllfeatures do

for n← 1 to NremainFeatures do
tmpfeaturelistn = [featurelisti ⊕ remainFeaturesn];
Train using tmpfeaturelistn;
classAccn = classi�cation accuracy using tmpfeaturelistn;

end
featurelisti+1 = tmpfeaturelistn with max classAccn.
remainFeatures = [Allfeatures 	 featurelisti+1 ]

end

The problem with the forward selection algorithm is the dependency of
one feature to the former selected features. That is a problem, as some
features might have poor discrimination power alone, but in combination
provide stronger discrimination power than the features selected using the
forward feature selection algorithm. There are therefore a risk of getting
trapped in a local maxima.

The graphs in Figure 5.5 show the most important features for respec-
tively whole plants, cotyledons and foliage. The �gure is made by the average
of 5 runs using a 10-fold cross validation, providing 50 di�erent validations7.
As it is seen, the variance of the classi�cations is largest for the foliage leaves
and smallest for the plants, which might indicate that the leaf samples are
not as representative for the dataset as the plants.

The indices on the x-axis can be looked up in Appendix J, which shows
a full list of the features and the classi�cation accuracies using all features
up to the selected one.

By assuming that the classi�cation accuracies from the 50 validations
are Gaussian distributed (which in not totally correct due to the bounded
range), the mean and standard deviation of the classi�cations are found.
The blue line in Figure 5.5 indicates the mean classi�cation accuracy from
50 cross-validations, the red line indicates the mean value plus the standard

7The forward selection method selects features by only a single 10-fold cross validation
for each iteration
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(a) Forward selection on plants. The mean clas-
si�cation accuracy is 96.7% for a subset of 36
features, but a classi�cation accuracy of 95.0%
can still be achieved with only 10 features.
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(b) Same plot as (a), but zoomed
on the �rst 50 features.
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(c) Forward selection on cotyledons. The mean
classi�cation accuracy is 89.0% for a subset of
183 features.
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(d) Same plot as (c), but zoomed
on the �rst 50 features.
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(e) Forward selection on foliage. The mean clas-
si�cation accuracy is 88.3% for a subset of 91
features, but a classi�cation accuracy of 85.2%
can be achieved with only 12 features.
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(f) Same plot as (e), but zoomed
on the �rst 50 features.

Figure 5.5: Forward selection for (a) Whole plants, (c) Cotyledons and (e) Foliages. The
blue line indicates the mean value from the 50-fold cross-validation, the red
line indicates the mean value plus the standard deviation and the green line
indicates the mean minus the standard deviation from the cross validation.
The red ◦ indicates the maximum classi�cation accuracy and the red ×
indicates that selected subset.
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deviation of the validations, and the green line indicates the mean value
minus the standard deviation of the validations. The maximum classi�cation
rate is marked by a red ◦, but by looking at the graphs, it is seen that they
are almost �at after only few features, for which reason, the feature subset
at the maximum classi�cation rate might not be the best choice.
It should be noticed that for cotyledons, there are two steep steps in the
classi�cation accuracy around 115 and 175 features. This is probably due to
the algorithm getting trapped in a local minima, which indicates that this
might not be the best feature ranking method. The features that causes
these two steps are both related to distance transform.

T-test as stopping criteria As there are some variation in the di�erent
classi�cation rates from the cross-validations, a t-test is made to �nd a good
choice of subset with as few features as possible. For the t-test a null-
hypothesis is made for each number of feature, saying that the results from
the cross-validations at this point and the results from the cross validations at
the point of the maximum classi�cation rate are from the same distribution
with the same mean. The t-test for a single hypothesis is given by

t =
x̄k − x̄max√
s2k
n +

s2max

n

, (5.2)

where x̄k and s2
k are the sample mean and variance, respectively, at the dis-

tribution using k features and x̄max and s2
max are similar measures at the

distribution with the maximum mean classi�cation accuracy. By using a 5%
signi�cance level, some of these null-hypothesises are rejected which means
that they are signi�cant lower than the classi�cation accuracy at the maxi-
mum. But for others, this hypothesis can not be rejected, which means that
we cannot conclude that one is better than the other. Therefore the feature
subset with the smallest number of features, which are not signi�cant lower
than the feature subset with the highest mean classi�cation accuracy, is cho-
sen.
The subset chosen from the t-test is marked with a red × on the graphs.

By looking at the top 10 selected features for plants, cotyledons and
foliages in Table 5.8, it is seen the plant is best described by a variety of
features, whereas cotyledons in general are best described by using the vari-
ations of the distance transform, which accounts for four of the top 10 fea-
ture, but also caused big increases in the classi�cation accuracy as earlier
described.
For foliages, seven of the top 10 features are variations of the distance trans-
form.
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Recursive Feature Elimination

# Plants Cotyledons Foliages

1 AverageChromaticityBlue1 DistTransformRS_Acc1 DistTransformRS_scaledAreaRoot4
2 DistTransformRS_Sort4 DistTransformRS_Sort8 DistTransformRS_AccScaled7
3 DistTransformRS_scaledAreaRoot6 HuMoments8 Convexity1
4 ExcessGreen1 DistTransformLP_scaledAreaRoot5 DistTransformLP_SortScaled8
5 Sphericity1 Convexity1 Solidity1
6 EllipticVariance1 VarRGB1 DistTransformRS_AccScaled3
7 EFdistScaled5 EllipticFourierAbs58 DistTransformRS_AccScaled5
8 VarRGB1 SkeletonDistanceMax1 DistTransformRS_scaledAreaRoot1
9 DistTransformRS_Sort9 DistTransformLP_AccScaled5 EllipticFourierAbs64
10 EFdistAcc1 EFdistAcc8 DistTransformLP_Sort1

Table 5.8: The ten �rst features for plants, cotyledons and foliages, achieved by using
the forward selecting algorithm

5.2.4 Recursive Feature Elimination

The Recursive feature elimination algorithm is quite similar to the for-
ward selection algorithm, but instead of adding a new feature in each it-
eration, the least important feature is removed from a list containing all
features. This algorithm is therefore not in�uenced on the order of the
remaining features such as in the forward selection algorithm. Still, the re-
cursive feature elimination algorithm can get trapped in local minima. The
Recursive feature elimination algorithm is described in Algorithm 3.

Algorithm 3: Recursive feature elimination algorithm

var featurelist1 = Allfeatures;
var remainFeatures = Allfeatures;
for i← 1 to Nfeaturelist1 − 1 do

for n← 1 to NremainFeatures do
tmpfeaturelistn = [featurelisti 	 remainFeaturesn];
Train using tmpfeaturelistn;
classAccn = classi�cation accuracy using tmpfeaturelistn;

end
featurelisti+1 = tmpfeaturelistn with max classAccn;
remainFeatures = [Allfeatures 	 featurelisti+1];

end

The calculations for the recursive feature elimination algorithm are quite
computationally intensive, as the required number of classi�cation is

∑N
x=1 x =

34191, for N = 261 features, where each classi�cation might consist of mul-
tiple cross-validations
By using the feature elimination algorithm the three graphs in Figure 5.6 are
created, showing the order in which the least important features are removed
for whole plants, cotyledons and foliage respectively. The �gure is made by
the average of 5 runs using a 10-fold cross validation, providing 50 di�erent
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validations8. The indices on the x-axis can be looked up in Appendix K,
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(a) Recursive feature elimination on plants. The
mean classi�cation accuracy is 95.5% for a sub-
set of 29 features.
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(b) Same plot as (a), but zoomed
on last 50 features.
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(c) Recursive feature elimination on cotyledons.
The mean classi�cation accuracy is 88.5% for
a subset of 18 features.
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(d) Same plot as (c), but zoomed
on last 50 features.
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(e) Recursive feature elimination on foliages. The
mean classi�cation accuracy is 87.8% for a sub-
set of 40 features.
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(f) Same plot as (e), but zoomed
on last 50 features.

Figure 5.6: Recursive feature elimination on (a) Whole plants, (c) Cotyledons and (e)
Foliages. The blue line indicates the mean value from the 50-fold cross-
validation, the red line indicates the mean value plus the standard deviation
and the green line indicates the mean minus the standard deviation from the
cross validation. The red ◦ indicates the maximum classi�cation accuracy
and the red × indicates that selected subset.

which shows a full list of the features and the classi�cation accuracies after
removing all features up to the selected one.

As with the graphs from the forward selection, the blue line indicates the
mean classi�cation accuracy from a 50 validations, the red line indicates the
mean value plus the standard deviation of the validations, and the green line

8The Recursive feature elimination algorithm selects features by only a single 10-fold cross
validation for each iteration
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Recursive Feature Elimination

indicates the mean value minus the standard deviation of the validations.
To �nd the optimal subset, the same procedure as with the forward selection
is used, where the chosen feature subset is the one with the smallest number
of features and which with a 5% signi�cance level does not perform signi�cant
worse that the best subset.
The classi�cation accuracy for the chosen subset is marked with a red ◦
and the classi�cation accuracy for the subset at the maximum classi�cation
accuracy is marked with a red×.

The top 10 ranking features are shown in Table 5.9.

# Plants Cotyledons Foliages

1 ExcessGreen1 DistTransformRS_SortScaled9 DistTransformRS_SortScaled5
2 DistTransformLP_Sort2 ObjectArea1 ObjectArea1
3 Compactness1 DistTransformRS_SortScaled2 DistTransformRS_AccScaled2
4 AverageChromaticityRed1 DistTransformRS_AccScaled4 ConvexHullArea1
5 DistTransformRS_AccScaled4 DistTransformRS_AccScaled2 DistTransformRS_SortScaled7
6 EFdistAccScaled4 VarRGB1 HuMoments7
7 AverageChromaticityGreen1 DistTransformLP_SortScaled6 EllipticVariance1
8 Rectangularity1 EllipticFourierAbs58 HuMoments1
9 DistTransformLP_SortScaled5 DistTransformLP_Sort8 DistTransformRS_AccScaled4
10 EFdistAccScaled7 DistTransformRS_scaledAreaRoot5 DistTransformRS_AccScaled6

Table 5.9: The 10 best features for plants, cotyledons and foliages respectively found by
recursive feature elimination

When looking at the features, describing whole plants, cotyledons and fo-
liages, it is seen that DistTransformRS_AccScaled4, DistTransformRS_AccScaled2
and ObjectArea1 are the only features that are present more than once in
the ten best features for the three elements.

When we extend to the top 20 features it is seen that whole plants use
more of the �standard� features such as Solidity, Rectangularity and Com-
pactness, where the classi�cations of leaves primarily depend on the elliptic
Fourier descriptors or the distance transform features. Especially the di�er-
ent variations of the distance transform feature are good at describing leaves,
as they account for 15 of the top 20 features for cotyledons and 9 of the top
20 features for foliages.

For the distance transform features, it is seen that among the top 20
features for the three tests, the re-sampled and the Legendre polynomial
variations are almost equally represented.
The feature, MinPlantThichness, which is the feature that was suggested in
Section 3.2.5 as a way to discriminate scentless mayweed and shepherd's-
purse, is not present at all in the top 20 features found from the recursive
feature extraction.
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5.2.5 Recursive Feature Elimination using Multiple Discriminant
Analysis

The multidiscriminan analysis (MDA) makes a weighting of each feature
as they are reduced to a lower dimensional feature space. Features providing
a low discrimination are weighted low, while features providing high discrim-
ination are high weighted. To make sure that the weighting is independent
on the magnitude or the absolute value of the features, a feature f of N
samples is subtracted by the smallest value to shift the features values above
zero.

f̃ = f −min (f) (5.3)

The length of all features are then normalized by the norm of all the samples.

˜̃
f i =

f̃i∥∥∥f̃∥∥∥ (5.4)

For uncorrelated features the weight of a feature is an indication of the
discriminate power for that feature. For correlated features the weight is
distributed between correlated features, consequently meaning that many
correlated features are weighted weaker. Selecting feature only based on the
weights of the MDA is therefore not an optimal selection method as proposed
in [76]. Instead this study propose a feature elimination method by only re-
moving the feature with the lowest weight for each iteration. This means
that only one of the correlated features will be removed and thereby increase
the weights of the rest of the correlated features. MDA works optimal when
data is spread in single clusters with a Gaussian distribution, and the fea-
ture elimination procedure using MDA is therefore not always optimal. In
comparison to the procedure described in �Recursive Feature Elimination�
allowing multiple clusters with non-Gaussian distributions the �Recursive
Feature Elimination using Multiple Discriminant Analysis� is seemingly not
preferred. However, the advantage of �Recursive Feature Elimination using
Multiple Discriminant Analysis� is that the computations do not explode ex-
ponentially, but close to proportional for an increasing number of features.
In Matlab the execution of �Recursive Feature Elimination� takes days
(around 120 hours for cotyledons), while the �Recursive Feature Elimination
using Multiple Discriminant Analysis� is executed in seconds (around 15 sec-
onds for cotyledons). In Table 5.10 the classi�cation accuracies using kNN
with the optimal subset in accordance with �Recursive Feature Elimination
using Multiple Discriminant Analysis� is shown.

In Appendix L the classi�cation accuracies for a decreasing number of
features are determined using the Recursive Feature Elimination using Multi-
ple Discriminant Analysis procedure for kNN, kNN+MDA, MVG andMVG+MDA.
The procedure using MDA for recursive feature elimination provides good
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Genetic algorithm for feature selection

Number of features Classi�cation accuracy

Plant 127 0.943
Cotyledon 140 0.865

Foliage 230 0.867

Table 5.10: Classi�cation accuracy of kNN for the optimal subset in accordance with
Recursive Feature Elimination using Multiple Discriminant Analysis.

results for plants, but provides worse results for cotyledons and foliage leaves.
The reason for this is presumably that classes are not distributed in single
Gaussian distributions.

5.2.6 Genetic algorithm for feature selection

The genetic algorithm, described in Section 2.3.1, is another method that
can be used to �nd good feature combinations[70].
In the genetic algorithm, the chromosomes pn that make up the feature
subsets, consists of n entries, where each entry refers to the indices of the
features in the list of all features. The aim is to let the chromosomes evolve
to better subsets based on the classi�cation accuracy og them. The proce-
dure of the algorithm is the same as described in Algorithm 1, but instead,
the �tness of each chromosome, i.e. how good it performs, is found using
the normalized classi�cation accuracy of a k-nearest-neighbour-classi�er.

The feature subsets shown in Table 5.11, 5.12 and 5.13 are found for
plants, cotyledons and foliages respectively by using 45 features for each
chromosome, 800 iterations, a cross-over probability of 0.7 and a mutation
probability of 0.1. For each iteration, the probabilities is decreased by 1/800
of the current values to stabilize the �nal result. With these 45 features
the maximum classi�cation accuracy is 93.7%, 84.3% and 85.3% for plants,
cotyledons and foliages, respectively. This is a bit poor compared to the
classi�cation accuracies found by the forward selection and recursive feature
elimination.
By looking at the selected features, it is also seen that the Fourier features
and the distance transform features accounts for most of the selected features.
However, it should be remembered that these also account for most of the
261 features.
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EllipticFourier77 EllipticFourier25 EFdistVar7
DistTransformLP_AccScaled8 EllipticFourier4 EllipticFourierAbs67
FormFactor1 DistTransformRS_Sort8 DistTransformLP_AccScaled2
DistTransformRS_SortScaled7 EllipticFourierAbs20 AverageChromaticityRed1
DistTransformLP_Sort2 AverageChromaticityGreen1 EllipticFourierAbs32
SkeletonDistanceMax1 DistTransformRS_AccScaled8 EllipticFourierAbs1
EllipticFourier19 EllipticFourier52 EllipticFourier74
EllipticFourierAbs10 DistTransformLP_Acc6 Sphericity1
ExcessGreen1 DistTransformRS_SortScaled9 EllipticFourierAbs2
DistTransformLP_scaledAreaRoot4 DistTransformRS_scaledAreaRoot3 EllipticFourier5
EFdist3 EFdistScaled6 DistTransformLP_Acc7
EllipticFourier23 DistTransformLP_scaledAreaRoot8 EFdistAcc2
DistTransformLP_Sort10 DistTransformRS_Acc1 DistTransformRS_AccScaled7
DistTransformLP_Sort9 EllipticFourierAbs36 EllipticFourierAbs57
EllipticFourierAbs7 EFdistScaled8 DistTransformLP_Sort3

Table 5.11: Best 45 features for classi�cation of plants found by using the genetic algo-
rithm. The features are not ordered by the performance of the individual
features. The classi�cation accuracy by using these features is 93.7%

DistTransformLP_SortScaled5 DistTransformRS_AccScaled2 EllipticFourier54
EllipticFourier21 EFdistScaled6 EFdist5
EllipticFourier7 EllipticFourierAbs74 DistTransformRS_SortScaled8
ObjectArea1 EllipticFourier42 EFdistAccScaled6
EllipticFourier67 DistTransformRS_SortScaled2 EllipticFourierAbs37
DistTransformLP_AccScaled10 DistTransformRS_Sort6 VarRGB1
DistTransformLP_scaledAreaRoot3 EllipticFourierAbs22 EllipticFourierAbs77
EFdistVar6 DistTransformRS_AccScaled1 ObjectArea1
DistTransformLP_scaledAreaRoot3 EllipticFourierAbs77 DistTransformRS_SortScaled6
EllipticFourier19 EllipticFourier22 DistTransformRS_scaledAreaRoot10
EllipticFourierAbs17 EllipticFourier43 DistTransformLP_AccScaled7
EllipticFourier37 DistTransformRS_AccScaled1 DistTransformLP_AccScaled7
SkeletonDistanceMean1 DistTransformRS_AccScaled5 EllipticFourier9
HuMoments6 EF_TVH_Max1 EllipticFourier44
DistTransformRS_SortScaled9 ConvexHullPerimeter1 DistTransformLP_AccScaled7

Table 5.12: Best 45 features for classi�cation of cotyledons found by using the genetic
algorithm. The features are not ordered by the performance of the individual
features. The classi�cation accuracy by using these features is 84.3%

EllipticFourier77 EllipticFourier5 EllipticFourierAbs14
EllipticFourier31 DistTransformRS_SortScaled8 DistTransformRS_SortScaled5
AspectRatio CircularVariance1 DistTransformRS_AccScaled4
HuMoments8 EFdistAccScaled7 EllipticFourierAbs34
EllipticFourier31 ExcessGreen1 EllipticFourierAbs70
EllipticFourier26 EllipticFourier60 DistTransformLP_scaledAreaRoot4
EllipticFourier13 EllipticFourierAbs76 ObjectPerimeter1
Solidity ObjectArea EllipticFourier66
EllipticFourierAbs61 EllipticFourier9 DistTransformRS_SortScaled7
DistTransformRS_AccScaled2 DistTransformLP_AccScaled5 EFdist9
EllipticFourierAbs30 SkeletonDistanceLength1 EllipticFourier72
DistTransformRS_Sort4 SkeletonDistanceMax1 EFdistAccScaled6
EllipticFourier68 DistTransformLP_Acc6 EFdistAcc5
DistTransformLP_Acc7 DistTransformLP_Sort8 EllipticFourierAbs55
EFdistVar6 EllipticVariance1 EllipticFourierAbs17

Table 5.13: Best 45 features for classi�cation of foliages found by using the genetic
algorithm. The features are not ordered by the performance of the individual
features. The classi�cation accuracy by using these features is 85.3%
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Result of the Feature Selection Methods

Ranking methods
All features Genetic alg. Indi. Feat. Forward sel. RFE RFE MDA MDA

Classi�er Plant Ele. N AC N AC N AC N AC N AC N AC N AC
MVG Plant 261 0.444 45 0.840 34 0.925 31 0.928 12 0.924 65 0.872 261 0.948

Cotyledon 261 0.065 45 0.582 86 0.734 43 0.369 27 0.796 82 0.696 261 0.806
Foliage 261 0.127 45 0.429 71 0.693 96 0.486 4 0.598 60 0.599 261 0.694
Total 0.205 0.640 0.791 0.580 0.802 0.737 0.833

kNN Plant 261 0.941 45 0.937 48 0.949 36 0.967 29 0.955 84 0.937 261 0.953
Cotyledon 261 0.871 45 0.843 113 0.871 183 0.890 18 0.885 135 0.860 261 0.832

Foliage 261 0.841 45 0.853 27 0.851 12 0.883 40 0.878 144 0.848 261 0.772
Total 0.889 0.877 0.894 0.915 0.907 0.884 0.862

SVM Plant 36 0.557 29 0.951
Cotyledon 183 0.507 18 0.889

Foliage 12 0.471 40 0.832
Total 0.517 0.899

Table 5.14: The number of features used and the classi�cation accuracy for the kNN and
MVG classi�er for the di�erent features subsets and the MDA dimension
reduction method. RFE stands for recursive feature selection.

5.3. Result of the Feature Selection Methods

A fast and good overview of all the selection methods is hardly achievable,
due to the many potential options. First the classi�cation accuracy is deter-
mined for two classi�ers; MVG and kNN. Secondly the classi�ers are used on
plants, cotyledons and foliage leaves and thirdly, �ve di�erent features selec-
tion methods have been used. The result of the di�erent features selection
methods are therefore presented in two sections.

5.3.1 Accuracy of Feature Selection Methods

The �rst section presents the classi�cation accuracy for the di�erent,
optimal feature subsets. The genetic algorithm di�ers from the others as it
optimizes for a constant number of features. The four other feature selection
methods; individual feature evaluation, forward selection, Recursive feature
elimination, and Recursive feature elimination using MDA will not provide
a single optimal subset, but rather a ranking of all the features. E.g. the
individual feature evaluation method ranks the features based on how well
they perform individually or e.g. the forward selection method ranks features
based on when they are added in the forward selection procedure. After the
features have been ranked by one of the four features selection methods, the
classi�cation accuracy is calculated for an increasing number of the ranked
features. The highest classi�cation accuracy is then determined, and by the
t-test a subset is selected as described in Section 5.2.3. The classi�cation
accuracy of the subset of each methods is presented in Table 5.14.

Generally the MVG classi�er performs worse than kNN in all settings,
which partly is because the selection methods are optimized with kNN.

The MVG classi�er has a bad performance when using all features, which
can be explained by non-Gaussian distributed data and due to the curse of
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dimensionality. A higher classi�cation accuracy is achieved by using any
of the di�erent features selection strategies. The best performing feature
selection method is forward selection, which achieves a total classi�cation
accuracy of 91.5%. By using all features together with the dimension reduc-
tion method MDA, a total classi�cation accuracy of 86.2% is achieved. The
disadvantage of using MDA is that no features are removed.

The SVM classi�er has only been used to test the feature subset achieved
by the forward selection and recursive feature elimination with a unopti-
mized kernel, as the kernel must be trained for each subset. The best per-
formances of the method is better than MVG, and almost similar to kNN
for the subsets achieved using recursive feature elimination.

The kNN classi�er performs the best, but also very similar for all the
di�erent feature subsets. However, the forward selection method improves
by just around 2 to 3 percentage points compared to the subset found by
the genetic algorithm and when using all features. The real advantage of
using a feature selection method for the kNN is to reduce the number of
features. The kNN classi�er achieves a classi�cation accuracy of 0.894 by
using the 48, 113, and 27 top ranking features for plants, cotyledons and
foliages, respectively.

5.3.2 Feature Selection Method Evaluation

Another interesting characteristic of the feature selection methods is how
few features that are necessary to achieve a given classi�cation accuracy. To
present this in a manageable way, the feature selection methods are presented
in the same plot for an increasing number of features. The colours of the
area below the graphs are determined by the feature selection method that
performs best for the given number of features. Feature subsets using a
constant number of features, and therefore a constant classi�cation accuracy,
is inserted in the plot as straight lines. The subset having a constant accuracy
is; all features (red dashed line), the genetic algorithm (black dashed line)
and the dimension reduction method MDA used on all features(blue dashed
line).
In Figure 5.7a, 5.7b and 5.7c the plots are shown for plants, cotyledons leaves
and foliage leaves, respectively.

In all three plots the highest classi�cation accuracy is achieved using the
forwards selection method. For plants (Figure 5.7a) the forward selection
method is superior to the other ranking methods for any number of features
apart from only a small section. For cotyledon (Figure 5.7b) and foliage
(Figure 5.7c) the forwards selection method performs bad for a low number
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(a)The accuracy of multiple feature selec-
tion methods for an increasing number
of features using plant.
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(b)The accuracy of multiple feature selec-
tion methods for an increasing number
of features using cotyledon
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(c)The accuracy of multiple feature selec-
tion methods for an increasing number
of features using foliage

Figure 5.7: The accuracy of di�erent feature selection methods: The individual feature
evaluation, forward selection, recursive feature elimination (RFE), recursive
feature elimination+MDA (RFE MDA). The constant dashed lines show
the accuracy of all features, the genetic algorithm and all features with
MDA (MDA).The colours of the area under the graphs are determined by
the highest performing feature selection algorithm for a given number of
features.
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Chapter 5. Feature Selection and Dimension Reduction

of features, and the RFE selection method is preferred for achieve a high
performance using a small set of features.

5.4. Feature Selection Discussion and Conclusion

Five di�erent features selection methods and two dimension reduction
methods have been investigated. For MVG, the feature selection methods
improve its accuracy greatly as it handles many dimensions poorly. The
results of using feature selection methods can though be improved if the
MVG classi�er is used in the feature selection. The optimal classi�cation
accuracy for MVG is achieved with all features using MDA for dimension
reduction. For kNN, the accuracy for di�erent feature selection methods
is close to similar, but the highest accuracy is achieved using the forward
selection method which improves results by about 2 percentage points at its
maximum, compared to the second highest methods.

Two classi�ers using di�erent subsets are selected for the classi�er fusion
which will be described in the following section, Chapter 6.

1. The kNN classi�er using the 46, 183 and 12 highest ranking features for
plants, cotyledons and foliages, respectively, determined by the forward
selection method.

2. The MVG classi�er using all features and the MDA dimension reduc-
tion procedure.
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Chapter6
Classifier Fusion

Until now the plant elements (cotyledon leaves, foliage leaves and whole
plants) have been classi�es individually. The aim now is to combine these
classi�cations to determine the species of the plant when the elements of the
plant have been classi�ed as multiple species.

Combining the results of multiple classi�ers to achieve an improved iden-
ti�cation is in general terms described as classi�er fusion de�ning a broad
range of di�erent methods. Creating a fusion between systems may be per-
formed at di�erent levels of abstraction namely; data level fusion, feature
level fusion and classi�er fusion[77]. This project will only treat classi�er
fusion as this method solely looks on the output of the classi�ers without
optimizing neither data segmentation nor the provided feature set. Classi�er
fusion also known as decision fusion or mixture of experts are generally di-
vided in two groups [77]. One group do not treat the output of the classi�er
but seeks to select a single or a subset of classi�ers to achieve the optimal
identi�cation. The classi�er fusion will only use one classi�er per plant ele-
ment, allowing little space for improvement. The second group of classi�er
fusion, most relevant to the current problem, seeks to identify the true class
only based on the result of the classi�ers. This study investigate three types
of classi�er fusion techniques. First Bayesian Belief Networks is investigated,
then Bayes Belief Integration (BBI) and �nally a voting procedure that in-
cludes BBI for combinations of equal votes.

To handle the plants, the term plant struct is introduced. A plant struct
may contain three di�erent plant elements; the whole plant, single cotyledon
leaves and single foliage leaves. After classi�cation each plant struct contains
a vector with the result for each plant element, de�ned as a combination.
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Chapter 6. Classi�er Fusion

6.1. Bayesian Belief Network (BBN) for species decision

In this section, a decision procedure based on Bayesian Belief Networks
(BBN) is described. BBN are networks which describes probabilities of
events given all cases from lower levels in the network[78]. The aim is to
use this to estimate the probability of a species, given an observation of the
whole plant and a series of its leaves.

As the size of the network will be quite large, a two species classi�cation
problem of sugar beet and cleavers will be walked through in this example,
where cotyledons and foliages are grouped together as 'leaves'. The Bayesian
network seen in Figure 6.1 illustrates the network for sugar beet, labelled S,
where a similar network should be created for the cleavers, labelled C.
The top node with S? indicates the true label for the plant. In this case,
the true species is sugar beet, likewise, the true label for the other network
would be C?.
The a priori probability of S? is written as P (S?) and is the naïve guess,
which would be the fraction of sugar beet in the data set.
The second level of the network is the classi�cation of the whole plant as
either S, C or ∅. The class ∅ de�nes the case where leaves are detected but
not connected to any plant, which could happen if for instance parts of the
plant are overlapped by other plants, whereby the plant element have been
discarded. Though this case will be ignored in this walk through.
An example of the probability for the whole plant classi�ed as S given that
the true species is S? is written as P (S|S?).
The third level of the network is the classi�cation of a number of leaves as
S. This will typically be a number between 0 and 4 in this data set. E.g.
is the probability of zero leaves identi�ed as S given that the true species is
S? and the whole plant has been classi�ed as C written as P (0S|S?, C).
The fourth level of the network is the classi�cation of a number of leaves as
C. This will also typically be a number between 0 and 4. The probability of
two leaves identi�ed as C given that the true species is S?, the whole plant
has been classi�ed as S and zero leaves has been classi�ed as S is written as
P (4C|S?, S, 0S).

The aim is to �nd the posteriori probability for S? and C? given a de-
tection of a plant with x leaves classi�ed as S and y leaves classi�ed as C.
If the whole plant has been classi�es as S, the probability for S? and C? are
respectively given by:

P (S?|S, xS, yC) (6.1)

P (C?|S, xS, yC) (6.2)

The rest of the derivation will be based on Eq. 6.1, but the procedure for
Eq. 6.2 is the same. From Bayes rule we have that the conditional probability
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Figure 6.1: Bayesian Network

of A given B can be rewritten as the joint probability of A and B divided
by the a priori probability of B:

P (A|B) =
P (A,B)

P (B)
(6.3)

Hereby Eq. 6.1 can be written as:

P (S?|S, xS, yC) =
P (S?, S, xS, xC)

P (S, xS, yC)
(6.4a)

=
P (yC|S?, S, xS) · P (S?, S, xS)∑

P?
P (P ?, S, xS, yC)

(6.4b)

=
P (yC|S?, S, xS) · P (xS|S?, S) · P (S?, S)∑

P?
P (P ?, S, xS, yC)

(6.4c)

=
P (yC|S?, S, xS) · P (xS|S?, S) · P (S|S?) · P (S?)∑

P?
P (P ?, S, xS, yC)

(6.4d)

=
P (yC|S?, S, xS) · P (xS|S?, S) · P (S|S?) · P (S?)∑

P?
P (yC|P ?, S, xS) · P (xS|P ?, S) · P (S|P ?) · P (P ?)

(6.4e)

, where P ? is the di�erent true labels, which in this example is sugar beet, S?,
or cleavers, C?. When looking at Eq. 6.4e, it is seen that the denominator
is constant for all species, and therefore can be left out. It is also seen that
all factors can be read from nodes in the tree.
The problem now is to �nd the probabilities for the di�erent nodes in the
tree.
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Finding the probabilities A problem with the Bayesian network is that
the probabilities of the nodes should be learned from the data, which means
that a very large data set is required for a large network[79]. For a general
case with N species, where each plant can have between 0 and L leaves, the
number of nodes of each of the N trees will be:

1 +N +N

N∑
n=1

(L+ 1)
n (6.5)

For seven species this makes 683,593 nodes in each of the seven networks
when assuming that each plant can have up to four leaves. By increasing the
number of species by just one more, the number becomes 3,906,249 nodes,
which means that the required dataset would be enormous and methods for
estimating the probabilities must be found.

When �nding the probabilities for each node, the �identi�ed plant� level
of the tree is the easiest to �nd, as this is the classi�cation accuracy of each
species on plant level. The probabilities of each of the sub-nodes is then the
fraction of that outcome, divided by the total outcomes in that branch on
that level.

Test of Bayesian belief network As stated earlier, the Bayesian net-
work require a very large amount of samples to cover the highest levels of the
tree. For that reason, a two-class network has been made and implemented
in Matlab to show the possibilities. The example has been made on Sugar
beet and Scentless mayweed, where foliages have been excluded such that
the plants only can have one kind of leaves.
For classi�cation the kNN classi�er has been used, with the optimal values
for k, as described in section 4.2.1.

The a priori probability for the true species is set to 0.5 for both classes
to thereby ignore prior knowledge of the distribution of plants.
Since this example uses only two classes, the initial classi�cation accuracy is
already high, where 15 of 900 plant samples were misclassi�ed. After using
this network, this number is reduced 12 of 900, which is a reduction of 20%
of the errors1.

6.2. Variations of Bayes Belief Integration (BBI)

The following section describes Bayes Belief Integration (BBI) using dif-
ferent settings.

1The Matlab script is located in Matlab/TwoStepClassifier/Demo_BayesianNetwork.m
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Bayes Belief Integration

6.2.1 Bayes Belief Integration

The BBI is de�ned as a soft-output method as it uses fuzzy measures in
the range [0,1] to de�ne an evidence; probability, possibility, necessity, belief
and plausibility[77]. In BBI the confusion matrix of each classi�er is used
to determine the belief for a given combination. A combination is de�ned
as the classi�cation result for each plant element in a struct. The confusion
matrix PTk of the classi�er labelled k is de�ned as2:

PTk =



n
(k)
11 · · · n

(k)
1j · · · n

(k)
1M

...
. . .

...
n

(k)
i1 n

(k)
ij n

(k)
iM

...
. . .

...
n

(k)
M1 · · · n

(k)
Mj · · · n

(k)
MM


(6.6)

, where M is the number of classes and n
(k)
ij is the number of times that

samples with true class j have been classi�ed as class i. In [80] the confu-
sion matrix is used to create what is de�ned as a belief measure of correct
assignments. The belief is found by determining the conditional probability
of sample x being class j, when the classi�er ek(x) outputs i.

Bel (x ∈ cj |ek (x)) = P (x ∈ cj |ek (x) = ik) (6.7)

The belief is de�ned as:

P (x ∈ cj |ek (x) = ik) =
nij

(k)

M∑
m=1

nim

(6.8)

In words Eq. 6.8 simply transforms the confusion matrix by dividing an entry
n

(k)
ij by the sum of all the entries in row (i) 3. In Table 6.1 an example of a

confusion matrix and a matrix of the belief measures are shown for a kNN
classifer for plants. The belief matrix should be determined for both whole
plants, cotyledon leaves and foliage leaves. The full example of using the
kNN classi�er is provided in Appendix M.
After the belief matrix have been determined for each plant elements, it is
possible to combine the result of each classi�er into a new belief measure

2The matrix looks slightly di�erent from the original paper as the matrix has been trans-
posed. The matrix is only of size M ×M and not M ×M +1 as an extra class have been
included in the paper allowing the classi�er to identify a sample to no class.

3The belief matrix should NOT be confused with the accuracy matrix as an entry n
(k)
ij is

divided by the sum of all the entries in column (j).
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Spe. 1 2 3 4 5 6 7 Tot. Spe. 1 2 3 4 5 6 7

1 242 0 2 0 0 0 0 244 1 0.992 0 0.008 0 0 0 0

2 2 185 0 0 1 0 0 188 2 0.011 0.984 0 0 0.005 0 0

3 3 8 316 1 0 1 4 333 3 0.009 0.024 0.949 0.003 0 0.003 0.012

4 1 2 2 567 8 12 3 595 4 0.002 0.003 0.003 0.953 0.013 0.020 0.005

5 1 3 2 2 691 9 2 710 5 0.001 0.004 0.003 0.003 0.973 0.013 0.003

6 0 0 0 4 3 232 1 240 6 0 0 0 0.017 0.013 0.967 0.004

7 1 0 3 1 0 1 120 126 7 0.008 0 0.024 0.008 0 0.008 0.952

True label True label
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Table 6.1: Confusion matrix and the belief matrix for a kNN classi�er used on plants
(k = 1).

Belclass for each class j.

Belclass (j) =
P (x ∈ cj |EN)∏

∀k∈classifiers
P (x ∈ cj |EN)

∏
∀k∈classifiers

P (x ∈ cj |ek (x) = ik)

(6.9)
, where classifiers is a list of all classi�ers to be used; one classi�er for each
plant element in the struct.
The sample x is identi�ed as the class j achieving the highest beliefBelclass (j)
for classes j = 1, ...,M .

c (x) = arg max
1≤j≤M

(Belclass (j)) (6.10)

EN describes the environment from which the samples are drawn. By
using the belief matrix de�ned in Table 6.1 changes towards classes with a
high number of samples are more likely to happen than changes to classes
with a low number of samples if the classi�cation errors for the classes is
identical. If the sample distribution used to make the belief matrix does
not represent the real distribution of the environment from which the test
samples are drawn, this bias will certainly change the outcome to the worse.
Therefore a weighting of the belief can be used as described in [81]. However,
as the belief matrix in this project is based on the same distribution as the
test samples, this weighting is not used. The �rst term in Eq. 6.9, is not
achievable from hard assignment classi�ers like kNN or SVM. Thereby 6.9
can be changed to a simpli�ed belief term:

Belclass (j) =
∏

∀k∈classifiers

P (x ∈ cj |ek (x) = ik) (6.11)

In this project three di�erent types of classi�er are used; one for each type
of plant element. To easily distinguish between the three classi�ers, they are
de�ned as k = 0, 100, 200 for the plant, cotyledon and the foliage classi�er,
respectively.
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Bayes Belief Integration

In Figure 6.2 the output ek of di�erent classi�ers are handled by the
BBI. The �rst struct contains only one plant element/one classi�er, whereby
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Figure 6.2: Decision procedure based on likelihood.

there are no reason to use classi�er fusion. The result is simply the output
of e1 (the plant classi�er) c(x) = e(x)1 = 4. The second struct contains
non-con�icting classi�cations as c(x) = e(x)100 = e(x)200 = 3 needing no
classi�er fusion. The third, fourth, �fth and sixth example shows con�icting
output justifying the use of BBI. An example is provided for the �fth struct
with the output e0 = 4, e100 = 105, e100 = 106 using three classi�ers k =
0, 100, 100. The belief has to be calculated for all classes j = 1, . . . , 7, but
the belief measure of class j = 4, 5, 6 is only presented assuming that they
are the most likely classes. The calculations are based on the numbers in
the belief matrices provided in Appendix M.

Belclass (4) =
∏

∀k∈classifiers

P (x ∈ c4|ek (x) = ik) (6.12a)

= P (x ∈ c4|e0 (x) = 4) · P (x ∈ c4|e100 (x) = 105) · P (x ∈ c4|e100 (x) = 106)

= 0.953 · 0.020 · 0.134 = 2.51 · 10−3

Belclass (5) =
∏

∀k∈classifiers

P (x ∈ c5|ek (x) = ik) (6.12b)

= P (x ∈ c5|e0 (x) = 4) · P (x ∈ c5|e100 (x) = 105) · P (x ∈ c5|e100 (x) = 106)

= 0.013 · 0.931 · 0.067 = 8.42 · 10−4

Belclass (6) =
∏

∀k∈classifiers

P (x ∈ c6|ek (x) = ik) (6.12c)

= P (x ∈ c6|e0 (x) = 4) · P (x ∈ c6|e100 (x) = 105) · P (x ∈ c6|e100 (x) = 106)

= 0.020 · 0.033 · 0.745 = 5.03 · 10−4

(6.12d)
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Chapter 6. Classi�er Fusion

The fourth class achieves the highest belief and the struct is therefore iden-
ti�ed as this class.

6.2.2 Combing voting and BBI

Another approach have been provided for classi�er fusion based on vot-
ing. The principle of voting is that each classi�er has a single vote. The class
with the highest number of votes is simply selected as the winning class. In
a case where multiple classes are ranked evenly high, the BBI model steps
in to determine the winning class. In Figure 6.3 a small decision tree shows
how six plant structs are processed. The combination of struct 1, 2 and 4
can all be determined by voting as a single class gets the most votes. The
combination of struct 3, 5 and 6 ends up having multiple classes with the
same number of votes and are handled by BBI.
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Figure 6.3: Decision procedure based on voting.

6.2.3 Settings for BBI

Multiple �Settings� have been provided to investigate di�erent variations
of classi�er fusion .

Voting The voting settings determines if voting should be used together
with BBI, basically selecting one of the two classi�er fusion method described
in section 6.2.1 and 6.2.2.

UseBelief The useBelief setting changes the classi�er fusion method in a
more fundamental way as it sets the classi�er to either use the belief ma-
trix or the likelihood of each class provided by the classi�er. Disabling the
useBelief setting is only possible for the MVG classi�er as kNN and SVM
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Settings for BBI

Class
Combination 1 2 3 4 5 6 7

4 0 0 0 0.993 0.001 0.006 0
105 0.173 0 0.048 0.180 0.362 0.195 0.041
106 0 0 0 0.104 0.001 0.895 0

Likelihood 0 0 0 0.0186 0 0.0011 0

Class
Combination 1 2 3 4 5 6 7

4 0.007 0.007 0.007 0.993 0.007 0.007 0.007
105 0.638 0.638 0.638 0.638 0.362 0.638 0.638
106 0.105 0.105 0.105 0.105 0.105 0.895 0.105

Likelihood 0.000 0.000 0.000 0.067 0.000 0.004 0.000

Table 6.2: Shows the likelihood of the MVG classi�er for samples of 4, 105 and 106.
Two settings are provided using likelihood; top one uses the likelihood for
each class and the bottom one uses only the value of the most likely class,
the likelihood of the other classes is the value 1 subtracted by the most likely
value

do not provide such measures. As described in Section 4.2.3 the classi�er
returns a likelihood for a given class, that can be used as a fuzzy measure in
the same way as the belief in Eq. 6.11. One fundamental di�erence of using
the likelihood of a classi�er is that it changes for every new sample, while
the belief matrix remains the same (after training) for all samples. The ad-
vantage of this is that a struct is identi�ed based on the likelihood of each
classi�er for a given sample and not the general belief for such a sample. An
example using struct 5, where e0 = 4, e100 = 105, e100 = 106 is presented4

in Table 6.2. By Eq. 6.11 the belief of class j is determined by the product
of all the values in each column j in Table 6.2. Two tables are provided,
the �rst shows a setting, where the likelihood of all classes are used, the
second setting uses only the value of the most likely class, the likelihood
of the other classes are the value of 1 subtracted by the most likely value
(likelihoodSimple).

Leaves Only Count Once The �nal setting removes identical classi�ca-
tion of leaves, making identical leaves only count as one. E.g. meaning that
[3 101 101 103 207 207] = [3 101 103 207].

4Actually there is no combination within the dataset having this combination, but the
values of actual individual classi�cations of 4, 105 and 106 have been used
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Chapter 6. Classi�er Fusion

6.2.4 Result of BBI

To evaluate the di�erent fusion methods, two subset found in Chap-
ter 5 are used. The kNN classi�er is used without MDA selecting the 36,
183 and 12 highest ranking features of Forward Selection for respectively
plants, cotyledons and foliage leaves. As also likelihood must be evaluated,
all features using the MDA and the MVG classi�er, is used.

Result of Classi�er Fusion with MVG The di�erent fusion methods
and settings using the MVG classi�er with MDA is seen in Table 6.35.

Settings
# CountLeavesOnces Voting Belief (Accuracy) Likelihood (Accuracy) LikelihoodSimple (Accuracy)

1 0 0 0.917 0.897 0.900
2 0 1 0.882 0.851 0.854
3 1 0 0.937 0.901 0.905
4 1 1 0.929 0.897 0.898

Table 6.3: The accuracy of di�erent classi�er fusion settings using the MVG classi�er.

The settings from Table 6.3 is prioritized as the fusion works better,
when the setting CountLeavesOnce is enabled and the setting Voting is dis-
abled. The Belief settings performs for the same setting better than the two
Likelihood based settings. The Likelihood setting should therefore not be pri-
oritizing. The two likelihood based settings generally performs very similar
achieving a maximum identi�cation accuracy of 0.897 and 0.900 for setting 1.

After a struct has been determined as a certain class, the con�icting el-
ements are corrected to the class identi�ed by the classi�er fusion. To show
the improvement of classi�er fusion the results of the MVG classi�er with
the optimal setting (setting 3) using belief is presented in Table 6.4 showing
the accuracy of a struct and each plant element before and after correction.
The fusion will not improve plants signi�cantly as the leaves performs

worse in general. However, the classi�cation accuracy of cotyledons and fo-
liages are improved remarkably by, respectively, 15.47 and 20.2 percentage
points, thereby improving the total classi�cation accuracy by 11.16 percent-
age points.

The confusion and the accuracy matrix is presented in Table 6.5.
This table shows that Maize (1) is classi�ed with a high accuracy of 0.976,

5 A test and training set is picked at random when training a classi�er, meaning that the
result changes slightly from run to run. The result of each setting is therefore determined
as the average value of 20 runs each run doing 10 cross validations.
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Accuracy
nElements Before After

Plant 2436 0.949 0.949
Cotyledon 3409 0.802 0.957

Foliage 1358 0.712 0.914

All 7203 0.835 0.946
Struct 2813 N/D 0.937

Table 6.4: Accuracy before and after fusion MVG.

Spe. 1 2 3 4 5 6 7 Spe. 1 2 3 4 5 6 7

1 245 3 7 0 1 0 5 1 0.976 0.015 0.015 0 0.001 0 0.014

2 0 186 9 1 3 1 2 2 0 0.930 0.019 0.002 0.004 0.004 0.006

3 4 3 432 1 1 2 4 3 0.016 0.015 0.935 0.002 0.001 0.007 0.012

4 1 2 2 553 9 20 13 4 0.004 0.010 0.004 0.952 0.013 0.071 0.037

5 0 2 5 2 682 17 5 5 0 0.010 0.011 0.003 0.959 0.061 0.014

6 0 1 0 14 8 228 12 6 0 0.005 0 0.024 0.011 0.814 0.035

7 0 1 4 6 2 6 299 7 0 0.005 0.009 0.010 0.003 0.021 0.862

True label True label
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Table 6.5: The confusion and accuracy matrix.

while Shepherd's-purse (6) and Cleavers(7) performs the worst with an ac-
curacy of 0.814 and 0.862, respectively.

Result of Classi�er Fusion with kNN The following section presents
the �nal results of the system using, what has been found, to be the optimal
classi�er and feature subset. First the di�erent classi�er fusion settings of
kNN is shown in Table 6.66.

Settings
# CountLeavesOnce Voting Belief (Accuracy)

1 0 0 0.9406
2 0 1 0.9312
3 1 0 0.9575
4 1 1 0.9560

Table 6.6: The accuracy of di�erent classi�er fusion settings using the kNN classi�er.

6 A test and training set is picked at random when training a classi�er, meaning that the
result changes slightly from run to run. The result of each setting is therefore determined
as the average value of 20 runs each run doing 10 cross validations.
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Chapter 6. Classi�er Fusion

Using the optimal setting (setting = 5) the improvements of classi�er
fusion is presented in Table 6.7 showing the accuracy of a struct and each
plant element before and after correction.

Accuracy
nElements Before After

Plant 2436 0.966 0.964
Cotyledon 3409 0.891 0.968

Foliage 1358 0.847 0.944

All 7203 0.908 0.962
Struct 2813 N/D 0.958

Table 6.7: Accuracy before and after fusion using kNN.

The classi�cation accuracy after fusion have degraded slightly for plants,
but improves cotyledons and foliage leaves of 7.7 and 9.7 percentage points.
The total classi�cation accuracy of all plant elements achieves an impressive
weighted rate of 0.962. The structs have an identi�cation accuracy of 0.958
showing the actually and �nal system performance. The confusion and the
accuracy matrix is presented in Table 6.8
This table shows that Sugar beet (3), Scentless mayweed (4) and Chickweed

Spe. 1 2 3 4 5 6 7 Spe. 1 2 3 4 5 6 7

1 242 1 3 0 0 0 3 1 0.964 0.005 0.006 0 0 0 0.009

2 2 184 0 0 0 0 0 2 0.008 0.920 0 0 0 0 0

3 3 7 450 1 0 1 6 3 0.012 0.035 0.974 0.002 0 0.004 0.017

4 1 2 4 568 7 19 6 4 0.004 0.010 0.009 0.978 0.010 0.068 0.017

5 1 3 2 1 691 13 4 5 0.004 0.015 0.004 0.002 0.972 0.046 0.012

6 0 0 0 6 8 241 13 6 0 0 0 0.010 0.011 0.861 0.037

7 1 1 0 1 0 0 308 7 0.004 0.005 0 0.002 0 0 0.888
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True label True label

Table 6.8: The confusion and accuracy matrix.

(5) are classi�ed with a high accuracy of above 0.97, while Shepherd's-purse
(6) and Cleavers(7) performs the worst with an accuracy of 0.861 and 0.888,
respectively.

Five examples of wrong classi�cations are shown for each of the seven
species in Appendix N7 to somehow present when the classi�er fails. The
appendix shows how most of the wrong classi�cation are either plants that
have been labelled incorrectly, non-ideal in shape or have rough edges due

7Images of all wrong classi�cations are provided with the disc that came with the report
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Classi�er Fusion Discussion and Conclusion

to bad segmentation.

The classi�er fusion have improved the total classi�cation accuracy from
0.908 to 0.962 for the plant struct, but another essential improvement of
using classi�er fusion for plants is that more structs are enabled for identi�-
cation. A procedure only classifying whole plants will identify poorly the 377
(13.4%) structs that only contains leaves and a procedure only classifying
leaves will fail to identify the 705 (25%) structs, where leaves could not be
extracted from the plant.

The classi�cation accuracies have already been optimized leaving little
space for improvement. Using the proposed resampling distance transform
(DistTransformRS_Sort) and the kNN classi�er. The classi�cation accura-
cies before and after fusion is shown in Table 6.9.
The example shows that the classi�er fusion can provide larger improve-

Accuracy
nElements Before After

Plant 2436 0.663 0.704
Cotyledon 3409 0.754 0.812

Foliage 1358 0.609 0.725
All 7203 0.696 0.759

Struct 2813 N/D 0.717

Table 6.9: Classi�cation accuracy before and after classi�er fusion using the kNN classi-
�er with the 10 subfeatures of the feature descriptor DistTransformRS_Sort
.

ments in a case where the classi�cation accuracies is not as high. The clas-
si�cation accuracies improve with 4.16, 5.71 and 11.6 percentage points for
plants, cotyledons and foliage, respectively. An improvement of 5.48 per-
centage points is also seen from plant without leaves to plants with leaves
(struct).

6.3. Classifier Fusion Discussion and Conclusion

The BBN classi�er fusion method provides a more complex model-based
procedure achieving promising results for two species. However, the network
has a great disadvantage in that the tree structure growths exponential for
an increasing number of species. Treating just seven species would require
an unrealistic amount of data. This ultimately makes the BBN classi�er
undesirable for plant identi�cation, as soon as one has a medium to large
number of species to deal with.
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Chapter 6. Classi�er Fusion

The Bayes Belief Integration classi�er fusion method has been described
and applied to the data of this project using a range of di�erent settings.
The Bayes Belief Integration method enables not just a fusion of the clas-
si�ers used for leaves and plants, it also succeeds in correcting con�icting
classi�ers and achieving a higher classi�cation accuracy. After fusion the
whole plant, single cotyledon and single foliage achieve a classi�cation accu-
racy of, respectively, 0.964, 0.968 and 0.944 and improving with -0.02, 7.66
and 9.66 percentage points. Ultimately the project achieves a plant (struct)
identi�cation accuracy of 0.958.
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Chapter7
Results and discussion

The following chapter will be a summary of the main results achieved in
the di�erent parts of the project. This chapter will also discuss results in
relation to the use of plant recognition for weed control.

During the segmentation phase, plants have been extracted from the
background gravel. This have been done using the di�erence of excess green
and excess red, which has proven to cast o� good results. However, under
di�erent lighting conditions or with a di�erent background, the background
may not be removed as e�ciently, for which reason optimal colour weights
have been investigated and a cost function has been made to optimize for
various colour segmenting cases.

All plants have been inspected manually in order to avoid overlapping
plants by manually segmenting these into single plants. This manual action
has been valuable to ensure a large data set within a short period of time.
However, the manual input has to be replaced by an automated process in
the future, so as to make the procedure valuable for weed control. All plants
have been sown under controlled conditions, whereby the quality of samples
is generally high. In the �eld, however, there will be a larger tendency for
plants to be misshapen, either because of di�erence in lighting and nutri-
ents or simply because plants may have lost leaves. Therefore, the results
must be seen in the light of these circumstances. The plant segmentations
has provided 2813 plant samples distributed on seven species, each covering
multiple growth stages.

One of the goals of this project has been to improve identi�cation by
combining the classi�cation of leaves and whole plants. It has therefore
been necessary to �nd ways to automatically detect leaves on plants and
cut them o�. Two methods have been analysed and implemented: The �rst
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Chapter 7. Results and discussion

method is based on the leaf's colour and the distribution of pixels, whereas
the second method is based on the contour of the plant. The �rst method
has the advantage that it can operate on overlapping leaves, but it is slow
and only able to deal with convex leaves; a feature which excludes many
foliages. The latter method is fast and because of modi�cations of the Plant
Stem Emerging Point algorithm, this method has been extended to han-
dle many di�erent leaf shapes, though it cannot handle overlapping leaves.
Furthermore, this method has been used to automatically cut o� leaves, so
that these can be classi�ed. Nevertheless, it has been necessary to conduct
a manual inspection so as to ensure that the leaves that have been found,
in fact, really are leaves. Furthermore, all cut-o� leaves have been ranked
according to how ideal they appear in the images, and the growth stages of
the leaves have been estimated. This information has been stored, but it
has not been put to use in this project. Moreover, the leaves are manually
labelled as either foliages or cotyledons, which has helped to eliminate some
variance in the dataset to ease the classi�cation. In the future, however,
such labelling will not be possible and all leaves should be gathered in the
same pool.
After the leaf segmentation, a total of 3409 cotyledons and 1358 foliages has
been extracted from the plants.

Based on the plant and leaf samples, 50 features descriptors have been
developed and implemented providing in total 261 feature values. Of these
features, the new variations of the Distance Transform [17] has been de-
veloped and proven to be the best single feature, apart from the colour
features.
Similarly, a feature has been derived from the elliptic Fourier transform,
which is able to describe the indentations of leaves. A third new feature is
the stem thickness estimating feature, which has been constructed so that it
discriminates plants with di�erent stem thickness. By looking at the forward
feature selection and the recursive feature elimination, it is seen that this
feature does not help discriminating the plants signi�cantly when combining
it with the other features in the feature set.

Three classi�ers have been used to identify plants and leaves; the MVG,
the kNN and the SVM classi�er. The MVG works poorly for high dimen-
sional spaces and handles best a single clustered, Gaussian distributed class.
The advantage of the MVG is that it provides a likelihood measure for each
class improving the classi�er fusion. The kNN classi�er generally performs
the best as it handles many features with multiple clusters of arbitrary dis-
tribution. A minor drawback of the kNN classi�er is that it favours classes
with a high number of samples. The SVM classi�er is not preferred as is
requires a time consuming process of optimization the kernel for a given
dataset. However, when optimized, it perform very well.

In order to achieve the highest accuracy possible, �ve di�erent features
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selection methods and two dimension reduction methods have been applied.
The �ve feature selection methods are; genetic algorithm, individual feature
performance, forward selection, recursive feature elimination and recursive
feature elimination using MDA. The forward selection method performs the
best for the k-nearest neighbour classi�er by using respectively 36, 183 and
91 features for plants, cotyledon and foliage leaves. The k-nearest neighbour
classi�er achieves the highest classi�cation accuracies with 96.7%, 89.0%
and 88.3% for whole plants, cotyledons and foliages, respectively. The two
feature dimension reduction methods, PCA and MDA, have also been ap-
plied. Both methods seek to �nd a linear combination of all features to
a lower the dimensional space, but as MDA keeps discrimination between
classes, it achieves better classi�cation accuracies. The drawback of MDA
is that it shrinks the information to e.g. a six dimensions feature space for
seven species potentially removing some discriminating information. MDA
provides the best reduction of features for the kNN classi�er achieving an
accuracy of 95.3%, 83.2% and 77.2% for whole plants, cotyledons and fo-
liages, respectively.

As previously mentioned, one of the goals of the project has been to test
whether classi�cation of plants could be improved by handling plants as both
whole plants as well as individual leaves. A method to combine the classi�-
cations of plants and leaves using Bayesian networks has been described and
a two-species example has been implemented. Even though this method has
provided an increased overall classi�cation accuracy, it is not suitable for the
multi-species problem, as the training data required increase exponentially
with the number of species.
Another method for combining the classi�cation of leaves with the classi�-
cation of whole plants is Bayes Belief Integrator. This method have shown
promising results. The classi�cation accuracy for plants is almost unchanged,
whereas the classi�cation rate of the leaves increases by 7.7 and 9.7 percent-
age points for cotyledons and foliages by combining the classi�cation of leaves
and plants. An example on classi�er fusion using only the new proposed vari-
ation of the Distance Transform improves the classi�cation accuracies from
66.3% to 70.4% for plants.

This result in the overall classi�cation of leaves and whole plants com-
bined, should be compared to others in the �eld of plant recognition.

T. M. Giselsson, in his study, achieves an accuracy of 94.8% for 1700
plant samples of eight species, where each species is only represented at one
growth stage. [16].

B. Åstrand et al. have classi�ed sugar beet in a �eld. They are able
to distinguish sugar beet from weeds by using only colour features whereby
they achieve an accuracy of 91%[27].

For leaves, D. J. Hearn has achieved an accuracy of 72% for 2420 leaves
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Maize Wheat Sugar beet Scentless mayweed Chickweed Shepherd's-purse Cleavers

96.4% 92.0% 97.4% 97.8% 97.2% 86.1% 88.8%

Table 7.1: Final Result by combining plant and leaf classi�cation

from 151 di�erent species, by using only Fourier descriptors [19]. Hearn uses
images acquired using a digital scanner.

JX. Du et al. achieve an accuracy of 93.6% for 1800 leaves divided over
25 species[20].

When viewing this report in the light of these results, the overall clas-
si�cation accuracy of 95.8% for 2813 plant samples, found in this project,
distributed on seven species and di�erent grown stages is a result that can
compete with existing research in the �eld of plant recognition.
However, as each of these studies are based on di�erent databases, the re-
sults can hardly be compared. It is therefore worth considering, whether
this project's database should be made available for the public to access and
contribute to, so that future studies can be based on comparable data.

The �nal result for the seven species is presented in Table 7.1. Some of
the examples from the wrong classi�cations have been extracted and placed
in Appendix N1. From these examples, it is seen that some misclassi�cations
are simply the result of wrong labelling and non-ideal plants. Other misclas-
si�cations are due to an un-sharp segmentation, resulting in a noisy edge or
plant mask.

1images of all wrong classi�cations is provided on the disc that comes with the report
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Chapter8
Future work

The image database used in this project has been very valuable as it has
provided a good foundation for the work undertaken here. However, the
database contains �ve more species, which have not been included in the
tests. These species are Charlock, Fat Hen, Cranesbill, Black-grass and
Loose Silky-bent.
Including these plants would be a manageable task, due to the segmentation
tools developed in this project, although it will probably be necessary to
adjust the features descriptors or make new ones to handle these species.

For instance Black grass and Loose Silky-bent have many of the same
characteristics as Winter Wheat, wherefore they are likely to be confused in
the current system.

Except from the plants, that have now been segmented, the image database
also contains plants at higher growth stages. These higher-stage plants have
the side-e�ect of overlapping each other. Such behaviour should also be ex-
pected in the �eld, for which reason the system should be able to handle
these cases. Still, as the classi�cation procedure is based on single plants
and single leaves, classi�cation methods for overlapping plants are yet to be
found.
A proposal for a fully automated system as e.g. a weeding machine is ready
for further development. The proposal is shown in Figure 8.1, where parts
implemented in the current system have been marked green. The �rst step
of plant recognition is to extract connected, green objects from the images
similar to the colour segmentation use in this project. Based on the ex-
perience from the database, these green connected objects could both be a
single leaves, single plants and overlapping plants. The next step introduces
an extra classi�er step, Leaf/Growth stage estimation, that determines if the
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Figure 8.1: Overview of further development

element is a leaf, a simple plant (plants having up to four leaves), or overlap-
ping/complex plants with more than four leaves. Simple plants, leaves and
overlapping/complex plants are then classi�ed individually, and each object
is thereby determined in a two-step classi�cation. The result of each classi-
�cation is then joint by using classi�er fusion in the �nal step. In general,
a two-step classi�er is not preferable, unless, as in this case, each object is
treated di�erently. If the elements were to be treated equally, another sin-
gle classi�er would have been preferable. A procedure for handling small,
non-overlapping plants, where the plants species decision is based on both
whole plants and its leaves, has been described in this project. However,
the system is not able to handle more complex structures such as plants at
higher growth stages or overlapping plants. The reason for this is that the
complexity of these objects are not preferably handled by shape and contour
features. Because of the complexity of segmenting overlapping plants, the
species classi�cation of those plants should be based primarily on the appear-
ance of the mess of plants rather than on individual plants and leaves. A
clustering based method for �nding whole leaves from overlapping plants has
been described in this project, which, in combination with the leaf features,
could help when classifying the mess. When it is not possible to extract
leaves by using this leaf extracting method, other recognition methods must
be used. One such method that could be investigated is the bag-of-words
model, where the images are divided into small patches, which are described
using a set of Scale-invariant feature transform (SIFT) descriptors. These
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descriptors are then held up against a codebook of known classes, where
the distribution of matches should re�ect the distribution of species in the
image.

To shortly demonstrate the possibility of a fully automated system, the
elements of the seven species have been labelled as either a simple plant, a leaf
and overlapping/complex plants. A test determines classi�cation accuracies
in Table 8.1 by using all features and the k nearest neighbour classi�er.

Plant objects Classi�cation Accuracy

Leaf 0.91
Simple Plant 0.93

Overlapping/Complex Plant 0.67

Table 8.1: The classi�cation accuracies for leaves, simple plants and overlap-
ping/complex plants.

These results are not optimized, but albeit this, they still provide good
classi�cation accuracies of 0.91, 0.93 and 0.67. Furthermore these classi-
�cation are not strict, meaning that a simple plant can be handled as an
overlapping/Complex plants and visa versa.

To decrease some of the variation of leaves within a plant species, a
method to straighten bending leaves is proposed. Even so, the method needs
to be optimized in order to handle more irregular leaf shapes before it is
suitable for an automated process.

When looking at the classi�cation results, it is remarkable that the clas-
si�cation accuracy of whole plants is as high as it actually is. This is partly
due to the data set, which is made under controlled conditions at Flakkeb-
jerg. This means that defects, such as loss of leaves, are not present in the
data set. Thereby, this fact makes the plant samples more similar and thus
increases the accuracy of their classi�cation. The natural next step would
therefore be to include non-ideal samples into the data in order to see how
this a�ect the method's ability to classify the species. This development
would likely decrease the classi�cation accuracy of whole plants, but as the
�nal decision of the system on which species, a plant belongs to, is based on
the classi�cation of both whole plants and their leaves, it would be interest-
ing to investigate if the classi�er fusion would be able to handle this. In the
�rst place, this could simply be done by manipulating the images, so that an
expansion of dataset could be avoided. Later on, however, images from the
�eld should be included to investigate the robustness of the system against
the variations given by light and di�erent nutrients, which might decrease
the good discrimination power, that the colour features provid.
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Chapter 8. Future work

None of the features, that have been tested in this project, are based on tex-
ture. This is primarily due to very �at appearance at the lower growth-stages
of the selected species. Still, texture based features should be reconsidered
when adding new species to the dataset.

A problem with the results from this project is that they are hardly com-
parable with other studies, as the database is di�erent from the databases
used by others. A way to move the �eld of plant recognition forward, would
be to make a common database, which preferably could be open for others to
use and to add additional samples. By doing this, methods for plant recog-
nition could be tested under the same conditions and provide comparable
results for di�erent plant recognition features, classi�ers and other methods.
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Chapter9
Conclusion

The objective of this project has been to investigate methods and procedures
for implementing a computer vision based system for plant identi�cation. A
challenge when using pattern recognition on plants is the variation within
the same species at di�erent growth stages. The project has successfully
applied and investigated di�erent measures in order to minimize the variation
between plants and thereby ultimately achieve higher identi�cation accuracy.

Segmentation The plant identi�cation is based on a database of 12 species
providing images of the plants in three to eleven di�erent growth stages ac-
cording to the BBCH index. A segmentation tool has been provided for
extracting plants and leaves automatically from images supported by a man-
ual labelling of the species. Plants are extracted from images by a colour
segmentation method. Three approaches using di�erent colour transforma-
tion have been applied; HSI, ExG and ExG-ExR. The ExG-ExR method is
chosen as the best procedure as it keeps related plant pieces together. Fur-
thermore, three general colour segmentation methods have been proposed.

Two methods have been investigated to extract leaves from the plant.
The �rst method is a modi�cation of the plant stem emerging point-algorithm
using the contour of plants to extract leaves. The modi�cation of the algo-
rithm even makes it possible to handle leaves with complicated contours such
as foliage leaves. The other method �nds leaves by creating and connecting
clusters using the Gustafson-Kessel C-means algorithm in combination with
the genetic algorithm. This method is able to extract leaves from overlapping
plants, but as the algorithm prefer convex leaves, the plant stem estimation
algorithm algorithm is used for the further processing.
The shape characteristics of a leaf within the same species have some varia-
tions due to bending leaves; either for natural reason or because of a skewed
camera angle. A leaf straightening algorithm is therefore proposed having
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Chapter 9. Conclusion

the purpose of reducing the variance of bending. Though the procedure
seems promising, some modi�cations are needed for it to handle more leaf
shapes.

Features A broad range of 50 features and 261 subfeatures have been im-
plemented covering both shape, contour and colour features. These features
include both common features like object area, solidity and eccentricity, but
also more complex features such as e.g. fractal dimension, distance trans-
form based features and a rotational invariant elliptic Fourier descriptor. The
project proposes multiple features including a partly scale invariant variation
of the distance transform that performs better than other distance transform
features. The elliptic Fourier distance features provide di�erent statistics of
distances between adjacent elliptic Fourier approximations thereby increas-
ing discrimination between classes.

Classi�er Three classi�ers have been used to identify plants and leaves.
These are the k-nearest neighbour classi�er, the multivariate Gaussian clas-
si�er and the support vector machine classi�er. The k-nearest neighbour
classi�er generally performs the best as it handles high dimensional feature
spaces with multiple clusters of arbitrary distribution. The multivariate
Gaussian classi�er works poorly for high dimension spaces and cannot han-
dle distributed classes. The advantage of the multivariate Gaussian classi�er
is that it gives a likelihood estimation for each class that describes the cer-
tainty of its choices.

Feature selection and dimension reduction In order to achieve the
highest accuracy possible, �ve di�erent features selection methods and two
dimension reduction methods have been applied. By using these, the number
of features necessary to achieve the maximum classi�cation is 34, 49 and 15
for whole plants, cotyledons and foliages, respectively. Two feature dimen-
sion reduction methods, principal component analysis and multidiscriminant
analysis, have also been applied. The multidiscriminant analysis performs
the best as it keeps discrimination between classes, and achieves the best
result for the multivariate Gaussian classi�er.

Classi�er fusion The �nal step combines the classi�cation of whole plants,
cotyledon and foliage leaves in a joint identi�cation of the species by using
Bayes belief integration, but the Bayesian belief network has also been in-
vestigated.

After classi�er fusion the system �nally achieves a plant identi�cation
accuracy of 95.8% for seven species.

The work of this project has investigated and implemented a range of
di�erent procedures for plant identi�cation using RGB images in all steps of
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a recognition procedure. Apart from joining the work of others in the �eld
of plant recognition and pattern recognition in general, new methods and
improvements to existing methods have been proposed. The overall system
proposes a procedure for extracting plants and leaves in order to exploit
the discriminating power of both. This procedure aims at �nally combining
the two for an improved identi�cation, proving that a computer vision based
system can be used to identify plant species with high identi�cation accuracy.
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AppendixA
Documentation of two Colour
segmenation methods

Two of the three proposed colour segmentation procedures including limita-
tions of the procedures are provided in this appendix.

Limitations of the colour segmentation method The general proce-
dure of projecting data unto a line have some limitations as the RGB colour
space is projected with a linear projection onto a line and thresholded in only
two classes; foreground (wanted) and background (unwanted) elements. The
limitation of only discriminating colours in only two classes involves a prob-
lem. Imagine that a low saturation of green is selected as foreground while
a high saturation of green and all other colours are selected as background.
The RGB colour space can - in this case - impossibly be separated in fore-
and background with only a single threshold as this would require three
classes. These methods can therefore only segment the highest saturation of
some colour to a desired lower saturation level and not opposite. Another
limitation of the linear projection is that the methods only works well in the
corners of the RGB colour space; red, green, blue, cyan, magenta, yellow,
white and black. These limitations are though also the major strength of
these methods as - with the ExG-ExR - they segments the di�erent shades
of a speci�ed colour providing a more robust segmentation in di�erent light-
ing. The advantage of the three methods - in comparison to the ExG-ExR
method - is though that adjustments can be performed, allowing a di�erent
colour than green to be segmented and allowing a more strict or less strict
colour segmentation.

The second method uses a cost function related to Eq. 2.8 used in the
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Appendix A. Documentation of two Colour segmenation methods

�rst method, but includes (> 0) in the equation.

J (r, g, b) =

∥∥∥∥∥∥∥
 R

G
B

T  r
g
b

 > 0−OSM

∥∥∥∥∥∥∥
2

(A.1)

The added part of the cost function provides a more correct solution as
the used segmentation is performed by thresholding positive values. The
cost function must though be optimized in a fundamentally di�erent way as
it becomes non-linear. To solve a non-linear problem like this analytically is
very hard (if not impossible), and the problem is solved using a numerical
optimization method.
The equation below will be true for all positive values of a. SM is the
segmentation mask.  R

G
B

T  a · r
a · g
a · b

 > 0 = SM (A.2)

The component g is therefore set to 1 to avoid this.

J (r, g, b) =

∥∥∥∥∥∥∥
 R

G
B

T  r
1
b

 > 0−OSM

∥∥∥∥∥∥∥
2

(A.3)

The cost function is now only dependent on r and b, and the feasible set in
the optimization problem is reduced from a 3d space to a 2d space. In Figure
A.1b the cost of di�erent r and b values have been plotted. The image is
seen in Figure A.1a.

Further research can be performed in �nding a good optimization method,
but to focus on more relevant parts of the project a simple brute force opti-
mization is used by calculating the cost function for a set of r and b values.
The method has been implemented in Matlab

1.
A selection of possible methods is though provided. A gradient method[82,

ch. 8] (either a �xed-step-size gradient or a steepest descent including a 1D
search) would be fast, but requires the function to be convex - only a single
minimum - and to contain no �at surfaces . A gradient function therefore
falls on both criteria as �at areas are presented in the graph and multi-
ple local minima are obtain when red/blue are mistakenly segmented in the
OSM2. An optimization method called simulated annealing [82, ch. 14.3]
1The Matlab script is located in:
Matlab/Segmenting/SegmentingTool/NewColorSegment/ColorSegmentationNonLinear.

m
2The gradient method might though be relevant as the max and min in the not thresholded
image can be used in �at areas and because large section of other than green must be
selected to add addition local minima.
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Figure A.1: The cost for di�erent values of r and b.

won't perform well on large �at areas and should not be used. Two opti-
mization procedures; the stochastic region contraction[83] and the particle
swarm algorithm[82, ch. 14.4] are more computationally intensive, but might
provide a better solutions than brute force.

Fishers Linear Discriminant The �nal colour segmentation implemen-
tation uses the Fishers Linear Discriminant method to likewise determine
the r, g and b component, but adds also a threshold value adding an ex-
tra degree of freedom. The Fishers Linear Discriminant method projects
d dimensional sample, x, onto a line with a linear combination. This is
equivalent to Eq. 2.6.

y = wTx = xTw =

 R
G
B

T  r
g
b

 (A.4)

The optimization in Fisher �nds the w by maximizing the distance between
the projected mean m̃i of each class i and minimizing the projected variance
s̃2
i of each class i.

max |m̃1 − m̃2| and min
(
s̃2

1 + s̃2
2

)
(A.5)

The cost is de�ned as

J (w) =
|m̃1 − m̃2|
(s̃2

1 + s̃2
2)

(A.6)

Increasing |m̃1 − m̃2| and decreasing
(
s̃2

1 + s̃2
2

)
will maximize J (w). The

maximum is de�ned as wfisher and determined by the following optimization
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Appendix A. Documentation of two Colour segmenation methods

equation.
wfisher = arg max (J (w)) = S−1

w (m1 −m1) (A.7)

The last term is a solution to the optimization problem derived in [69, pp.
117]. In Figure A.2a all pixels are plotted in an RGB space. The wfisher
line has been added in the plot with the values of r = -2.4, g = 3.7232 and
b = -1.7936. In Figure A.2b all pixels have been projected on to the wfisher
line and matched with a Gaussian distribution. The threshold is de�ned as
the intersection of the two distributions and found to be -0.042. The OSM
pixels shows a rather screwed Gaussian distribution and the threshold might
therefore be modi�ed. The RGB image and the OSM is shown in Figure
A.2c. In Figure A.2d the pixels are projected onto a 1D or greyscale image
and thresholded at the intersection of the two distributions.
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Figure A.2: Segmenting colour with Fisher.
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AppendixB
Principal Components Analysis (PCA)

From [69, p. 115] the process is described. We start with the cost function

J0 (x0) =

n∑
k=1

‖x0 − xk‖2 (B.1)

Where x0 is a general representation of the d dimensional feature vectors
x1, . . . ,xn, where n is the number of samples. Here our aim is to minimize
J0 in a least square manner. The solution to this problem is x0 = µ, that
would say; the mean of the dataset. This mean µ is the best one-component
expression of our dataset, and can be expressed as

µ =
1

N

N∑
k=1

xk (B.2)

To express the variation, we have to add a term, as µ does not express
any variation.

x = µ + ae (B.3)

Figure B.1: 2D example of Principal
Components Analysis

x(2)

x(1)

e

µµ
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Appendix B. Principal Components Analysis (PCA)

where e is a unitvector pointing in the direction of our high-dimension
feature-space with the largest variation and a is a scalar, specifying the
length of the vector. By chaging the cost function with this representation
we get

J (a1, . . . , an, e) =

N∑
k=1

‖(µ + ake)− xk‖ (B.4)

By minimizing this cost function, we get a set of weights expressing how
the k samples best can be expressed in an one-dimensional subspace spanned
by e. That is, how far from µ along e the k samples lay. To minimize the
cost function, we take the partial derivative J with respect to ak, and setting
it to zero, we get

min︸︷︷︸
ak

J =
∂

∂ak
= 0⇒ 2ak − 2eT (xk − µ)⇒ ak = eT (xk − µ) (B.5)

Which, according to [69] means that geometrically the least-squares so-
lution is the projection of xk onto the vector e through µ. The last thing
is to �nd the direction of e. To �nd the solution we insert ak into Eq. B.5
which gives us

J = −eTSe +
∑
k

‖xk − µ‖2︸ ︷︷ ︸
not dependent on e

(B.6)

Here S is the sample covariance matrix, which is generated in the follow-
ing way:

S =

N∑
k=1

(xk − µ) (xk − µ)
t (B.7)

because the last term of Eq. B.6 is independent of e we just skip it when
minimizing J with respect to e. This minimization problem is solved using
Lagrange, as we have the constrain, that ‖e‖ = 1

J̃ = eTSe− λ
(
eTe− 1

)
(B.8)

where λ is the Lagrange multiplier. We di�erentiate J̃ with respect to e and
set it to zero, from which we get

∂J̃

∂e
= 2Se− 2λe = 0 ⇒ Se = λe (B.9)

which is a normal eigenvalue problem. We want to �nd e, that satis�es this
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eTSe = eTλe = λ eTe︸︷︷︸
=1

= λ (B.10)

The largest eigenvalue of the sample covariance matrix S will satisfy
this. Let us call the largest eigenvalue λ1 and the FIRST PRINCIPAL
COMPONENT e1. We now have the direction of the line.
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AppendixC
Multiple Discriminant Analysis (MDA)

Multiple Discriminant Analysis is a dimension reduction method that takes
c classes of d dimensions/features and reduces the number of dimensions to
a (c− 1) dimensional space. MDA assumes, that the feature dimension d is
larger or equal to the number of plant species c, that are being classi�ed[69].
Derivation starts by determining the within-class scatter Sw as in Fishers's
linear discriminant described in Appendix A, but extended to c classes.

Sw =

c∑
i=1

Si (C.1)

where the scatter matrix Si again is given by

Si =
∑
x∈Di

(x− µi) (x− µi)
T (C.2)

and the between class scatter is given by:

Sb =

c∑
i=1

ni (µi −M) (µi −M)
T (C.3)

where ni is the number of samples in class i and M is total mean for all
classes de�ned by

M =
1

n

c∑
i=1

niµi, (C.4)

where n is the total number of samples. With this total mean, we can de�ne
a total scatter matrix, which turn out to be the sum of the within- and
between-class scatter matrices.

St = Sb + Sw (C.5)
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Appendix C. Multiple Discriminant Analysis (MDA)

The projection from the d-dimentions of the features to (c−1) dimension
is

y = WTx (C.6)

whereby the projected scatter-matrices S̃b and S̃w can be described by

S̃w = WTSwW (C.7)

S̃b = WTSbW (C.8)

The aim now is to �nd the subspace, described by W, where the pro-
jection of the features for the di�erent classes have as large separation as
possible while keeping the in-class separation as small as possible. To do
this, the following cost function J (W) is created, which we want to maxi-
mize. I.e. we want to maximize the within-class scattering while minimizing
the between-class scattering.

J (w) =

∣∣∣S̃b∣∣∣∣∣∣S̃w∣∣∣ =

∣∣WTSbW
∣∣

|WTSwW|
(C.9)

where the columns in W are the eigenvectors for the (c− 1) solutions to
the eigenvalue problem:

Sbwi = λiSwwi (C.10)

This matrix W maps the features from the high dimension space to a
(c− 1)-dimensional subspace, which maximises J (w)

By sorting the eigenvectors according to the corresponding eigenvalues,
the six (c − 1) �rst eigenvectors contains the contribution of all features to
this lower-dimension feature-set. The weight of each feature is then found
by taking the sum of the absolute value of each row in W.
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AppendixD
Extracting Boundary

The input of the algorithm is a binary mask of the plant as shown in Figure
D.1b. The contour must be determined as a list of points running clockwise
around the boundary. The boundary is shown in Figure D.1c. Initially
di�erent morphological operations are performed on the plant mask.

• Holes within the plant mask is �lled with the Matlabfunction im-
�ll(bw,'holes') to avoid one/more boundaries inside the object.

• The morphological operation open with a 3x3 square mask is performed
to remove noise in the boundary of the object.

• The Matlab function bwmorph(bw,'remove') with the argument 're-
move' is used to extract only the boundary.

• The Matlab function bwmorph(bw,'shrink',Inf) with the argument
'shrink' makes the thinnest possible boundary.

0 0 0 1
0 0 0 1
0 1 1 1
1 1 0 0

→


0 0 0 1
0 0 0 1
0 0 1 0
1 1 0 0


Operation 1,2 and 4 are performed to avoid rare case that cause errors when
the sorted coordinate list is made. In �gure D.1 the RGB image, the binary
mask and the boundary of a plant is shown.

Sorting the boundary is performed by �rst getting a random pixels from
the boundary. This pixel is stored, marked as the current position and moved
from the boundary image. The next pixel in the boundary is simply the pix-
els from the boundary with the shortest distance to the current position.
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Appendix D. Extracting Boundary

(a) RGB image (b) Plant binary mask (c) Plant boundary

Figure D.1: Shows the RGB image, the binary mask and the extracted boundary of the
plant.

The closest pixels is stored (unless the distance is to big), marked as the
current position and removed from the boundary image. The procedure is
processed until all pixels in the boundary have been removed.
This simple procedure will initially run in a random direction (either clock-
wise or counter clockwise) as the starting point will have two neighbor pixels.
In Figure D.2a the problem is illustrated, showing that the procedure will
run in a counter clockwise direction as the button pixels is closest.

(a) The starting point has a possibility of running in both
directions.

(b) Corrected to run in the
correct direction

Figure D.2: Illustration of how the starting point has a possibility of running in a counter
clockwise direction.

To avoid this problem pixels in the wrong direction must be temporally
removed, so the procedure will run in the right direction as in D.2b.
To choose the right direction the second point will not always be in an up
direction as in Figure D.2 as the starting point e.g. might be located on
the other side of the plant. A small mask is therefore selected from the
plant mask around the starting point. The small mask contains information
about the direction of the interior (marked with a blue dot arrow) in Figure
D.3a. The correct direction will now always point in the direction of the
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green arrow. The mask is rotated -90◦ as in Figure D.3b to remove (only
temporally) neighbor pixels placed in the wrong direction by multiplying
(Hadamard product) on the boundary. A mask of only size 3x3 around the
starting point is su�cient.

(a) The starting point has a possibility of
running in both directions.

(b) Corrected to run in the correct direction

Figure D.3: Illustration of how the starting point has a possibility of running in a counter
clockwise direction.

The boundary is sorted in a function implemented in Matlab
1 which

includes a procedure for �nding the �rst two points 2

1The Matlab script is located in: Matlab/Segmenting/PSEP/PSEP_SortedEdgeList.m
2The Matlab script is located in: Matlab/Segmenting/PSEP/PSEP_findTheFirst2Points.
m
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AppendixE
Total variation denoiseing

This is a denoising technique, that tries to remove noise while keeping edges.
The noisy image b can be decomposed into a clean image u and noise n.

b (x, y) = u (x, y) + n (x, y) (E.1)

The aim is to minimize the di�erence between u and b by using a regular-
ization term, which described the total variation across a boundary[84].

arg min
u

{
1

2
λ ‖u− b‖22 +

1

2
‖u‖TV

}
, (E.2)

where the latter term ‖u‖TV does not use the L2-norm but instead uses the
total variation norm, which is the L1 norm of the derivative of u [84]. Said
in a graphical way, the total variation norm is the total distance along the
intensity-axis as illustrated in Figure E.1. The minimization term can be
rewritten as

arg min
u

{
1

2
‖u‖TV

}
subject to λ ‖u− b‖22 (E.3)

In words this means, that we want to minimize �uctuation but still want
the output u to look like the original input b as much as possible. Without

TV=2

1

2

0

TV=2 TV=2

Figure E.1: Total variation for three di�erent, one dimentional surfaces
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Appendix E. Total variation denoiseing

this constrain, the output would just be �at, but in combination the result
will retain sharp edges. λ is a weight factor, which determine how much we
want the original image over the �at image.
As we assume, that the centre vein is bending, we treat the image isotropic.

‖u‖TVISO =

∫
x

|∇u|2dx =
√

ux + uy (E.4)

The function, that we want to minimize can thereby be described as:

f (x, y, u, ux, uy) =
1

2
λ(u− b)2

+
√
u2
x + u2

y (E.5)

To solve this constrained problem we use Euler Lagrange [85]. The u that
satis�es this, is the solution to the total variation denoising problem:

∂f

∂u
− d

dx

∂f

∂u′
=
∂f

∂u
− d

dx

∂f

∂ux
− d

dy

∂f

∂uy
= 0 (E.6)

To ease the calculation, we split Eq. E.6 in small parts:

∂f

∂u
=

∂

∂u

1

2
λ(u− b)2

+
√
u2
x + u2

y︸ ︷︷ ︸
=0

 =
1

2
λ · ∂

∂u

(
u2 + b2 − 2ub

)
= λ (u− b)

∂f

∂ux
=

∂

∂ux

(
1

2
λ(u− b)2

+
√
u2
x + u2

y

)
=

∂

∂ux

(√
u2
x + u2

y

)
=

ux√
u2
x + u2

y

∂f

∂uy
=

∂

∂uy

(
1

2
λ(u− b)2

+
√
u2
x + u2

y

)
=

∂

∂ux

(√
u2
x + u2

y

)
=

uy√
u2
x + u2

y

Hereby Eq. E.6 becomes:

∂f
∂u − d

dx
∂f
∂ux

− d
dx

∂f
∂uy

= 0

λ (u− b) − d
dx

(
ux√
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(E.7)

The only thing left now is to �nd the u satisfying this. This u is the
solution to the total variation problem and can be found by using eg. steepest
descent. By using steepest descent the update process will be:

ut+1 = ut − ε

λ (u− b)− d

dx

 ux√
u2
x + u2

y

− d

dy

 uy√
u2
x + u2

y

 (E.8)

Where ε is the step-size and t indicates the iteration1.
1The Matlab script is based on [86] and located in: \Matlab\Plant normalization\tv.m
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AppendixF
Feature Overview

Table F.1 shows a complete list of the 50 di�erent feature descriptors.
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Appendix F. Feature Overview

Number Feature Number of Features

1 ObjectArea 1
2 ObjectPerimeter 1
3 ConvexHullArea 1
4 ConvexHullPerimeter 1
5 Solidity 1
6 HuMoments 8
7 FractalDimension 1
8 Convexity 1
9 Compactness 1

10 ChromaticityBlue 1
11 ChromaticityGreen 1
12 ChromaticityRed 1
13 ExcessGreen 1
14 AspectRatio 1
15 Rectangularity 1
16 Sphericity 1
17 CircularVariance 1
18 Eccentricity 1
19 FormFactor 1

20 EllipticVariance 1
21 RatioOfPrincipalAxes 1
22 DistTransformMean 1
23 DistTransformVariance 1
24 DistTransformRS_Sort 10
25 DistTransformRS_SortScaled 9
26 DistTransformRS_Acc 10
27 DistTransformRS_AccScaled 9
28 DistTransformRS_scaledAreaRoot 10
29 DistTransformLP_Sort 10

30 DistTransformLP_SortScaled 10
31 DistTransformLP_Acc 10
32 DistTransformLP_AccScaled 10
33 DistTransformLP_scaledAreaRoot 10
34 DistLPCorrelation 1
35 SkeletonDistanceLength 1
36 SkeletonDistanceMax 1
37 SkeletonDistanceMean 1
38 SkeletonDistanceVariance 1
39 VarRGB 1

40 MeanDistBetweenHulls 1
41 MinPlantThickness 2
42 EllipticFourierAbs 77
43 EF_TVH_Max 1
44 EF_TVH_Mean 1
45 EFvar 1
46 EFdist 9
47 EFdistScaled 9
48 EFdistAcc 9
49 EFdistAccScaled 8
50 EFdistVar 9

Total 261

Table F.1: Feature list of all feature descriptors.
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AppendixG
Classification Accuracy of Individual
Features

The Tables G.1, G.2 and G.3 shows the top 20 ranking features based on the
classi�cation accuracy of individual features for each plant element respec-
tively plants, cotyledon leaves and foliage leaves. The tables supports an
important fact of the project, namely that features perform di�erent for the
three plant elements. For plants the highest ranking features are the 5 color
based features. The list also includes 9 variations of the DistTransform,
and in ranking order the SkeletonDistanceMean (6th place), SkeletonDis-
tanceVariance (10th place), Sphericity (12th place), HuMoments (15th place)
and Compactness (20th place). For cotyledons leaves the highest 3 ranking
features are still color features, but includes now the features such as Ec-
centricity (4th place), RatioOfPrincipalAxes (7th place), AspectRatio(14th
place) and Elliptic Fourier (16th place). For foliage leaves the highest raking
features includes only one color feature (9th place), the top seven ranking
features are variations of the DistTransform and includes new features such
as MeanDistBetweenHulls (8th place) , DistLPCorrelation1 (10th place), El-
lipticVariance (15th place), Solidity (18th place) and EFDistAcc (4th place).
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Appendix G. Classi�cation Accuracy of Individual Features

Ranking Feature number Feature name CA

1 19 AverageChromaticityRed 0.502
2 134 VarRGB 0.500
3 17 AverageChromaticityBlue 0.500
4 18 AverageChromaticityGreen 0.491
5 20 ExcessGreen 0.474
6 132 SkeletonDistanceMean 0.451
7 79 DistTransformLP_Sort1 0.434
8 133 SkeletonDistanceVariance 0.422
9 29 DistTransformMean 0.418
10 80 DistTransformLP_Sort2 0.417
11 77 DistTransformRS_scaledAreaRoot9 0.416
12 23 Sphericity 0.413
13 119 DistTransformLP_scaledAreaRoot1 0.412
14 76 DistTransformRS_scaledAreaRoot8 0.406
15 78 DistTransformRS_scaledAreaRoot10 0.393
16 74 DistTransformRS_scaledAreaRoot6 0.389
17 73 DistTransformRS_scaledAreaRoot5 0.385

Table G.1: Classi�cation accuracy (CA) of top 20 ranking features for plants based on
the classi�cation accuracy of individual features

Ranking Feature number Feature name CA

1 55 DistTransformRS_Acc6 0.627
2 38 DistTransformRS_Sort8 0.626
3 50 DistTransformRS_Acc1 0.618
4 37 DistTransformRS_Sort7 0.612
5 56 DistTransformRS_Acc7 0.603
6 49 DistTransformRS_SortScaled9 0.590
7 41 DistTransformRS_SortScaled1 0.569
8 33 DistTransformRS_Sort3 0.566
9 31 DistTransformRS_Sort1 0.561
10 32 DistTransformRS_Sort2 0.561
11 36 DistTransformRS_Sort6 0.560
12 40 DistTransformRS_Sort10 0.554
13 39 DistTransformRS_Sort9 0.552
14 51 DistTransformRS_Acc2 0.551
15 58 DistTransformRS_Acc9 0.550
16 29 DistTransformMean1 0.549
17 42 DistTransformRS_SortScaled2 0.546

Table G.2: Classi�cation accuracy of top 20 ranking features for cotyledon based on
the classi�cation accuracy of individual features
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Ranking Feature number Feature name CA

1 72 DistTransformRS_scaledAreaRoot4 0.581
2 59 DistTransformRS_Acc10 0.573
3 58 DistTransformRS_Acc9 0.562
4 52 DistTransformRS_Acc3 0.556
5 55 DistTransformRS_Acc6 0.552
6 66 DistTransformRS_AccScaled7 0.549
7 69 DistTransformRS_scaledAreaRoot1 0.546
8 1 ObjectArea1 0.541
9 71 DistTransformRS_scaledAreaRoot3 0.534
10 37 DistTransformRS_Sort7 0.532
11 65 DistTransformRS_AccScaled6 0.531
12 67 DistTransformRS_AccScaled8 0.529
13 70 DistTransformRS_scaledAreaRoot2 0.528
14 50 DistTransformRS_Acc1 0.525
15 57 DistTransformRS_Acc8 0.525
16 45 DistTransformRS_SortScaled5 0.524
17 62 DistTransformRS_AccScaled3 0.521

Table G.3: Classi�cation accuracy of top 20 ranking features for foliage based on the
classi�cation accuracy of individual features
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AppendixH
Classification Accuracy Of Feature
Descriptors Containing Multiple
Features

The feature descriptors have been ranked for average classi�cation accuracy
of all plant elements, showing the ranking of features for plants, cotyledons
leaves and foliage leaves. Generally variations of the DistTransform perform
well for all elements. Especially the proposed DistTransformLP_scaledAreaRoot
is the highest ranked feature for all plant elements. All the LP (Legendre)
variation of the distTransform rank higher than the RS methods, and the
DistTransformLP_SortScaled and DistTransformLP_AccScaled are ranked
on either 2nd or 3rd place. No feature is constantly ranked as the worst
feature, for plants the MinPlantThickness is the lowest, for cotyledon leaves
the EFdistVar is ranked the lowest and for foliage leaves the EFdistAcc-
Scaled ranked the lowest. The feature EllipticFourierAbs is generally the
best feature for all plant elements when not including any variations of the
DistTransform.
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Appendix H. Classi�cation Accuracy Of Feature Descriptors Containing Multiple

Features

No. Feature name All Plant Cotyledon Foliage

Rank CA Rank CA Rank CA Rank CA
33 DistTransformLP_scaledAreaRoot 1 0.779 1 0.803 1 0.762 1 0.777
30 DistTransformLP_SortScaled 2 0.726 2 0.740 2 0.709 2 0.743
32 DistTransformLP_AccScaled 3 0.712 3 0.729 3 0.697 3 0.719
31 DistTransformLP_Acc 4 0.693 7 0.711 4 0.677 6 0.703
28 DistTransformRS_scaledAreaRoot 5 0.685 6 0.718 5 0.659 7 0.692
29 DistTransformLP_Sort 6 0.685 5 0.722 6 0.656 8 0.691
27 DistTransformRS_AccScaled 7 0.673 8 0.699 7 0.649 9 0.687
43 EllipticFourierAbs 8 0.668 4 0.725 10 0.612 4 0.711
24 DistTransformRS_Sort 9 0.640 11 0.663 8 0.621 12 0.647
26 DistTransformRS_Acc 10 0.629 12 0.633 9 0.615 11 0.654
42 EllipticFourier 11 0.624 10 0.681 11 0.588 16 0.612
47 EFdist 12 0.615 9 0.698 15 0.519 5 0.708
25 DistTransformRS_SortScaled 13 0.597 13 0.594 12 0.583 13 0.638
49 EFdistAcc 14 0.567 14 0.585 14 0.526 14 0.637
48 EFdistScaled 15 0.546 15 0.579 13 0.527 18 0.535
6 HuMoments 16 0.511 18 0.450 16 0.514 15 0.613
50 EFdistAccScaled 17 0.507 16 0.533 17 0.486 19 0.510
51 EFdistVar 18 0.501 17 0.509 19 0.425 10 0.679
41 MinPlantThickness 19 0.464 19 0.432 18 0.441 17 0.580

Table H.1: Classi�cation accuracy (CA) of feature descriptors containing multiple
features.
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Appendix I
Evaluation of Distance Transform
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Appendix I. Evaluation of Distance Transform

Maize Winter wheat Sugar beet Scentless mayweed Chickweed Shepherd's-purse Cleavers
Total

1 2 3 4 5 6 7

dsortRS 0.576 0.217 0.692 0.790 0.784 0.459 0.492 0.656
dsortLP 0.624 0.242 0.717 0.830 0.888 0.580 0.538 0.599
dscaledLP 0.672 0.227 0.757 0.845 0.882 0.588 0.647 0.642
dscaledRS 0.552 0.181 0.609 0.723 0.727 0.474 0.300 0.699
dAccuRS 0.508 0.394 0.643 0.786 0.824 0.267 0.400 0.706
dAccuLP 0.600 0.232 0.760 0.869 0.879 0.514 0.515 0.721
dAccuScaledLP 0.648 0.258 0.748 0.849 0.861 0.592 0.600 0.739
dAccuScaledRS 0.624 0.273 0.732 0.838 0.826 0.463 0.554 0.722
dscaledAreaRootRS 0.72 0.303 0.785 0.753 0.821 0.506 0.662 0.730
dscaledAreaRootLP 0.752 0.434 0.852 0.883 0.908 0.675 0.723 0.806
r2 0.12 0.116 0.382 0.463 0.398 0.235 0.069 0.325

Table I.1: Classi�cation accuracies for a 4-nearest neighbour classi�er using the distance
transform features on whole plants.

Maize Sugar beet Scentless mayweed Chickweed Shepherd's-purse Cleavers
Total

1 3 4 5 6 7

dsortRS 0.758 0.904 0.530 0.836 0.386 0.789 0.755
dsortLP 0.799 0.728 0.290 0.636 0.218 0.706 0.737

dscaledLP 0.851 0.748 0.225 0.477 0.127 0.640 0.775
dscaledRS 0.737 0.897 0.557 0.793 0.386 0.759 0.678
dAccuRS 0.784 0.901 0.639 0.847 0.404 0.789 0.714
dAccuLP 0.799 0.704 0.238 0.527 0.078 0.477 0.587

dAccuScaledLP 0.907 0.031 0.114 0.033 0.023 0.041 0.514
dAccuScaledRS 0.799 0.672 0.495 0.796 0.500 0.640 0.495

dscaledAreaRootRS 0.835 0.737 0.644 0.788 0.474 0.690 0.092
dscaledAreaRootLP 0.923 0.038 0.119 0.041 0.018 0.043 0.097

r2 0.603 0.018 0.025 0.013 0.000 0.003 0.047

Table I.2: Classi�cation accuracies for a 1-nearest neighbour classi�er using the distance
transform features on cotyledons.

Sugar beet Scentless mayweed Chickweed Shepherd's-purse Cleavers
Total

3 4 5 6 7

dsortRS 0.087 0.668 0.521 0.435 0.762 0.585
dsortLP 0.696 0.433 0.398 0.230 0.654 0.669

dscaledLP 0.913 0.228 0.071 0.062 0.390 0.662
dscaledRS 0.435 0.763 0.638 0.438 0.861 0.736
dAccuRS 0.304 0.715 0.712 0.441 0.831 0.742
dAccuLP 0.913 0.199 0.023 0.050 0.156 0.419

dAccuScaledLP 1,000 0.040 0.000 0.022 0.048 0.192
dAccuScaledRS 0.348 0.742 0.790 0.627 0.844 0.128

dscaledAreaRootRS 0.217 0.841 0.783 0.553 0.797 0.044
dscaledAreaRootLP 1,000 0.042 0.000 0.019 0.048 0.044

r2 1.000 0.044 0.000 0.012 0.035 0.041

Table I.3: Classi�cation accuracies for a 1-nearest neighbour classi�er using the distance
transform features on Foliages.
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AppendixJ
Forward selection Result

Table J.1 shows the features ranged from the least to the maximum impor-
tance for the classi�cation accuracy tested on whole plants.
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Appendix J. Forward selection Result

# Feature CA # Feature CA # Feature CA

1 AverageChromaticityBlue1 0.501 Convexity1 0.964 175 EllipticFourierAbs75 0.956
DistTransformRS_Sort4 0.739 EllipticFourierAbs67 0.963 EllipticFourierAbs54 0.954
DistTransformRS_scaledAreaRoot6 0.856 90 DistTransformLP_Acc1 0.963 EllipticFourierAbs44 0.952
ExcessGreen1 0.898 DistTransformLP_Acc6 0.963 EllipticFourierAbs25 0.954

5 Sphericity1 0.925 Compactness1 0.965 EllipticFourierAbs17 0.956
EllipticVariance1 0.936 EllipticFourierAbs74 0.965 180 EFdistAcc6 0.954
EFdistScaled5 0.943 DistTransformLP_AccScaled10 0.966 Eccentricity1 0.953
VarRGB1 0.945 95 DistTransformLP_Acc9 0.966 EllipticFourierAbs71 0.954
DistTransformRS_Sort9 0.949 DistTransformRS_Sort8 0.966 DistTransformMean1 0.954

10 EFdistAcc1 0.949 EllipticFourierAbs12 0.967 DistTransformLP_scaledAreaRoot6 0.953
DistTransformLP_AccScaled6 0.952 DistTransformRS_scaledAreaRoot8 0.967 185 EllipticFourierAbs55 0.953
DistTransformLP_Acc5 0.952 EllipticFourierAbs18 0.965 EllipticFourierAbs52 0.955
DistTransformLP_Sort4 0.951 100 EllipticFourierAbs70 0.967 ConvexHullPerimeter1 0.954
DistTransformRS_Sort3 0.953 DistTransformRS_AccScaled6 0.966 EFdistScaled8 0.954

15 EllipticFourierAbs30 0.950 EF_TVH_Max1 0.967 DistTransformRS_SortScaled3 0.955
MinPlantThickness2 0.952 DistTransformRS_Acc4 0.966 190 EllipticFourierAbs35 0.954
EFdist9 0.953 DistTransformLP_Acc2 0.967 DistTransformLP_AccScaled1 0.952
EllipticFourierAbs47 0.952 105 EllipticFourierAbs39 0.966 RatioOfPrincipalAxes1 0.953
Solidity1 0.956 SkeletonDistanceMean1 0.966 EllipticFourierAbs62 0.952

20 DistTransformLP_Acc10 0.957 EFdistAcc8 0.966 EFdist1 0.953
DistTransformRS_Acc5 0.958 DistTransformLP_Acc8 0.967 195 EllipticFourierAbs50 0.952
DistTransformLP_Sort3 0.957 EFdistScaled7 0.967 DistTransformLP_AccScaled2 0.952
EFdistVar1 0.959 110 DistTransformLP_AccScaled7 0.965 EllipticFourierAbs28 0.951
EFdistVar9 0.958 EllipticFourierAbs11 0.963 DistTransformRS_SortScaled5 0.950

25 HuMoments6 0.959 ObjectPerimeter1 0.966 EllipticFourierAbs14 0.948
HuMoments4 0.959 EllipticFourierAbs27 0.963 200 EFdistAcc5 0.949
DistTransformRS_Acc10 0.958 DistTransformRS_SortScaled8 0.964 EllipticFourierAbs2 0.948
AverageChromaticityRed1 0.961 115 EllipticFourierAbs64 0.963 EFdistAccScaled8 0.951
FormFactor1 0.958 EllipticFourierAbs66 0.962 EllipticFourierAbs5 0.950

30 EllipticFourierAbs59 0.958 AverageChromaticityGreen1 0.965 DistTransformRS_SortScaled7 0.948
EFdist3 0.960 ObjectArea1 0.963 205 DistTransformRS_AccScaled2 0.951
DistLPCorrelation1 0.962 EFdistVar7 0.963 EllipticFourierAbs58 0.949
DistTransformRS_Sort5 0.963 120 EllipticFourierAbs38 0.962 DistTransformRS_scaledAreaRoot2 0.951
CircularVariance1 0.962 EllipticFourierAbs72 0.963 DistTransformLP_scaledAreaRoot2 0.949

35 EFdistScaled9 0.963 EFdistVar5 0.963 EllipticFourierAbs21 0.951
DistTransformRS_AccScaled4 0.967 DistTransformLP_scaledAreaRoot5 0.960 210 DistTransformLP_SortScaled5 0.950
DistTransformRS_Acc7 0.967 EFdist8 0.961 EFdistVar3 0.949
EllipticFourierAbs9 0.967 125 DistTransformRS_scaledAreaRoot7 0.961 EllipticFourierAbs53 0.950
DistTransformLP_SortScaled2 0.966 DistTransformRS_scaledAreaRoot10 0.960 DistTransformLP_SortScaled6 0.947

40 DistTransformLP_SortScaled4 0.966 DistTransformRS_Acc6 0.961 EFdistAccScaled4 0.948
EFdistAccScaled2 0.967 EllipticFourierAbs32 0.961 215 EFdist5 0.948
EllipticFourierAbs20 0.968 EllipticFourierAbs31 0.961 DistTransformRS_SortScaled4 0.948
EFdistScaled6 0.969 130 DistTransformRS_Sort1 0.960 DistTransformRS_AccScaled9 0.947
DistTransformRS_Acc8 0.969 DistTransformRS_AccScaled8 0.961 EllipticFourierAbs42 0.949

45 DistTransformLP_Acc3 0.968 DistTransformLP_scaledAreaRoot1 0.960 EllipticFourierAbs19 0.949
HuMoments3 0.970 EllipticFourierAbs51 0.958 220 EllipticFourierAbs68 0.948
SkeletonDistanceVariance1 0.966 EFdistAccScaled5 0.960 EllipticFourierAbs29 0.949
DistTransformRS_Sort10 0.967 135 FractalDimension1 0.960 DistTransformRS_scaledAreaRoot3 0.949
HuMoments2 0.967 EllipticFourierAbs41 0.957 EllipticFourierAbs16 0.950

50 DistTransformRS_Sort2 0.967 DistTransformLP_Sort9 0.959 ETvar1 0.948
DistTransformRS_SortScaled1 0.965 EFdistScaled3 0.959 225 EllipticFourierAbs1 0.947
DistTransformRS_AccScaled1 0.965 DistTransformLP_SortScaled9 0.958 EFdist4 0.948
EFdistAcc4 0.966 140 EFdistAcc2 0.960 EllipticFourierAbs77 0.950
EllipticFourierAbs60 0.967 EllipticFourierAbs73 0.959 EllipticFourierAbs61 0.948

55 DistTransformRS_Acc3 0.967 EllipticFourierAbs63 0.959 EllipticFourierAbs26 0.949
AspectRatio1 0.967 EllipticFourierAbs23 0.957 230 DistTransformLP_AccScaled9 0.949
DistTransformLP_Acc4 0.968 EFdist6 0.957 DistTransformRS_AccScaled7 0.947
EllipticFourierAbs10 0.967 145 DistTransformLP_Sort10 0.957 DistTransformRS_AccScaled5 0.948
DistTransformLP_scaledAreaRoot8 0.965 EFdistScaled4 0.960 EllipticFourierAbs33 0.948

60 DistTransformRS_Acc1 0.965 DistTransformLP_Sort7 0.959 SkeletonDistanceLength1 0.949
ConvexHullArea1 0.966 EFdistVar4 0.957 235 MinPlantThickness1 0.948
EllipticFourierAbs56 0.965 EllipticFourierAbs76 0.958 EFdistAcc3 0.947
DistTransformRS_Acc2 0.966 150 EFdistAccScaled3 0.959 DistTransformLP_scaledAreaRoot3 0.946
DistTransformLP_AccScaled3 0.966 DistTransformLP_SortScaled1 0.958 DistTransformRS_scaledAreaRoot4 0.946

65 HuMoments1 0.967 DistTransformRS_Sort7 0.959 DistTransformLP_AccScaled8 0.945
DistTransformLP_Sort6 0.967 DistTransformRS_scaledAreaRoot9 0.958 240 EF_TVH_Mean1 0.947
EFdistAccScaled7 0.967 DistTransformRS_SortScaled6 0.956 MeanDistBetweenHulls1 0.948
DistTransformLP_Sort1 0.967 155 DistTransformLP_scaledAreaRoot4 0.957 DistTransformLP_AccScaled5 0.949
DistTransformLP_Sort5 0.966 EllipticFourierAbs13 0.954 DistTransformLP_SortScaled3 0.947

70 DistTransformRS_Sort6 0.967 DistTransformRS_SortScaled2 0.955 EllipticFourierAbs24 0.948
EllipticFourierAbs36 0.965 EFdistAcc9 0.955 245 DistTransformLP_SortScaled8 0.945
DistTransformLP_Sort8 0.966 EllipticFourierAbs7 0.955 EllipticFourierAbs4 0.946
EFdist7 0.966 160 EFdistVar2 0.954 EllipticFourierAbs57 0.946
EFdistVar8 0.966 DistTransformRS_SortScaled9 0.953 DistTransformLP_SortScaled10 0.945

75 DistTransformRS_AccScaled3 0.965 EFdistAccScaled1 0.957 EFdistScaled1 0.947
EllipticFourierAbs15 0.965 EllipticFourierAbs48 0.955 250 DistTransformLP_scaledAreaRoot7 0.946
DistTransformVariance1 0.966 EllipticFourierAbs65 0.956 EllipticFourierAbs49 0.946
EllipticFourierAbs43 0.964 165 EllipticFourierAbs6 0.955 EllipticFourierAbs22 0.943
HuMoments7 0.964 EllipticFourierAbs34 0.953 DistTransformLP_Acc7 0.945

80 EFdist2 0.967 EllipticFourierAbs46 0.954 EllipticFourierAbs3 0.943
SkeletonDistanceMax1 0.964 HuMoments5 0.956 255 EFdistScaled2 0.942
Rectangularity1 0.964 EllipticFourierAbs69 0.953 EllipticFourierAbs45 0.941
HuMoments8 0.964 170 EllipticFourierAbs8 0.954 DistTransformRS_scaledAreaRoot1 0.941
DistTransformLP_Sort2 0.964 EFdistVar6 0.952 EFdistAcc7 0.941

85 EFdistAccScaled6 0.965 EllipticFourierAbs37 0.954 DistTransformLP_scaledAreaRoot10 0.939
DistTransformLP_AccScaled4 0.964 DistTransformRS_Acc9 0.952 260 DistTransformLP_scaledAreaRoot9 0.939
DistTransformRS_scaledAreaRoot5 0.963 EllipticFourierAbs40 0.954 DistTransformLP_SortScaled7 0.939

Table J.1: Order of feature importance from forward selection tested on Plants. The
classi�cation accuracy (CA) indicates the classi�cation rate after the feature
has been added to the subset

168



# Feature CA # Feature CA # Feature CA

1 DistTransformRS_scaledAreaRoot4 0.594 EllipticFourierAbs38 0.875 175 EllipticFourierAbs6 0.886
DistTransformRS_AccScaled7 0.700 DistTransformRS_SortScaled9 0.875 EllipticFourierAbs4 0.884
Convexity1 0.739 90 EllipticFourierAbs35 0.878 DistTransformLP_AccScaled2 0.890
DistTransformLP_SortScaled8 0.753 EllipticVariance1 0.883 EFdistScaled1 0.893

5 Solidity1 0.758 DistTransformRS_SortScaled4 0.890 EllipticFourierAbs43 0.887
DistTransformRS_AccScaled3 0.801 DistTransformLP_SortScaled1 0.889 180 DistTransformRS_scaledAreaRoot6 0.887
DistTransformRS_AccScaled5 0.830 EllipticFourierAbs30 0.886 DistTransformLP_scaledAreaRoot4 0.886
DistTransformRS_scaledAreaRoot1 0.839 95 EllipticFourierAbs60 0.885 DistTransformLP_Acc2 0.880
EllipticFourierAbs64 0.840 Sphericity1 0.885 EllipticFourierAbs1 0.884

10 DistTransformLP_Sort1 0.842 MinPlantThickness2 0.890 EFdistAccScaled7 0.892
EllipticFourierAbs23 0.842 EllipticFourierAbs49 0.886 185 DistTransformLP_Sort4 0.892
SkeletonDistanceMax1 0.851 DistTransformLP_Sort3 0.889 DistTransformLP_Sort2 0.884
DistTransformRS_Acc6 0.844 100 EllipticFourierAbs14 0.889 EF_TVH_Max1 0.896
EllipticFourierAbs53 0.846 DistTransformLP_scaledAreaRoot6 0.886 FormFactor1 0.892

15 DistTransformRS_Acc1 0.846 AspectRatio1 0.889 EllipticFourierAbs55 0.892
DistTransformLP_AccScaled4 0.849 DistTransformLP_Acc1 0.885 190 DistTransformRS_scaledAreaRoot8 0.889
DistTransformLP_Sort8 0.856 AverageChromaticityGreen1 0.889 DistTransformLP_Sort6 0.886
EllipticFourierAbs31 0.853 105 EFdistVar3 0.890 DistTransformRS_scaledAreaRoot10 0.890
DistTransformRS_Acc4 0.854 EFdist5 0.886 EFdistScaled5 0.890

20 DistTransformLP_SortScaled6 0.852 EllipticFourierAbs12 0.883 EllipticFourierAbs7 0.892
DistTransformLP_AccScaled3 0.855 EFdistScaled2 0.891 195 EllipticFourierAbs15 0.896
DistTransformRS_Acc7 0.858 SkeletonDistanceLength1 0.892 EllipticFourierAbs48 0.894
DistTransformLP_Acc6 0.854 110 DistTransformLP_Acc4 0.886 EFdist2 0.891
EllipticFourierAbs41 0.855 MinPlantThickness1 0.888 EllipticFourierAbs9 0.888

25 EllipticFourierAbs36 0.854 DistTransformLP_Acc9 0.886 FractalDimension1 0.891
EllipticFourierAbs28 0.857 EFdistVar8 0.891 200 EllipticFourierAbs18 0.892
DistTransformRS_scaledAreaRoot5 0.854 DistTransformRS_AccScaled9 0.890 EllipticFourierAbs29 0.894
DistTransformRS_Sort9 0.852 115 SkeletonDistanceMean1 0.888 DistTransformRS_Acc2 0.887
DistTransformRS_scaledAreaRoot9 0.856 EllipticFourierAbs2 0.886 DistTransformRS_scaledAreaRoot3 0.891

30 EllipticFourierAbs46 0.864 EllipticFourierAbs27 0.889 DistTransformLP_SortScaled4 0.890
EllipticFourierAbs63 0.860 EFdistAccScaled2 0.893 205 EllipticFourierAbs45 0.889
EllipticFourierAbs11 0.857 EllipticFourierAbs26 0.891 DistTransformLP_scaledAreaRoot2 0.889
EllipticFourierAbs37 0.860 120 EllipticFourierAbs42 0.888 EllipticFourierAbs62 0.886
EllipticFourierAbs66 0.859 DistTransformLP_Sort9 0.889 RatioOfPrincipalAxes1 0.888

35 EFdistAccScaled5 0.858 ExcessGreen1 0.887 EllipticFourierAbs54 0.890
DistTransformLP_AccScaled8 0.858 EllipticFourierAbs22 0.890 210 EFdistAcc9 0.891
DistTransformLP_SortScaled5 0.857 EllipticFourierAbs34 0.890 EFdistAcc8 0.884
EFdistAcc1 0.859 125 EFdist4 0.890 DistTransformRS_AccScaled6 0.887
EFdistAcc2 0.856 EllipticFourierAbs73 0.888 DistTransformVariance1 0.885

40 EFdist9 0.857 EllipticFourierAbs69 0.890 EFdistScaled3 0.882
EFdistAcc4 0.861 EFdistVar5 0.892 215 EllipticFourierAbs61 0.888
DistTransformLP_SortScaled7 0.865 EllipticFourierAbs47 0.893 EFdistAccScaled8 0.888
EllipticFourierAbs20 0.865 130 DistTransformRS_Sort10 0.889 EFdistScaled8 0.884
DistTransformLP_SortScaled9 0.858 EllipticFourierAbs77 0.889 EFdistAcc5 0.886

45 DistTransformLP_Sort5 0.864 EllipticFourierAbs51 0.884 EFdistScaled7 0.885
DistTransformLP_Sort7 0.866 EFdistVar1 0.893 220 DistTransformMean1 0.890
EllipticFourierAbs67 0.866 EllipticFourierAbs68 0.891 EFdistAcc7 0.887
EFdistAccScaled1 0.866 135 DistTransformRS_Acc9 0.889 DistTransformLP_Acc3 0.884
DistTransformLP_AccScaled7 0.870 ETvar1 0.888 DistTransformLP_scaledAreaRoot8 0.882

50 EF_TVH_Mean1 0.863 DistTransformLP_SortScaled10 0.891 DistTransformRS_Sort1 0.888
VarRGB1 0.867 EFdistAccScaled3 0.891 225 EllipticFourierAbs70 0.886
DistTransformLP_Acc5 0.873 SkeletonDistanceVariance1 0.891 DistTransformRS_Sort7 0.885
EFdistVar7 0.867 140 EllipticFourierAbs71 0.888 AverageChromaticityRed1 0.884
DistTransformLP_SortScaled3 0.871 AverageChromaticityBlue1 0.891 DistTransformRS_Sort6 0.877

55 CircularVariance1 0.871 DistTransformRS_SortScaled3 0.890 Eccentricity1 0.881
EllipticFourierAbs75 0.871 EllipticFourierAbs8 0.889 230 DistTransformLP_AccScaled6 0.878
DistTransformLP_scaledAreaRoot9 0.869 EllipticFourierAbs5 0.886 EFdistVar4 0.880
EllipticFourierAbs33 0.872 145 EllipticFourierAbs13 0.891 EllipticFourierAbs76 0.876
EllipticFourierAbs3 0.870 MeanDistBetweenHulls1 0.887 DistTransformRS_Sort2 0.876

60 DistTransformRS_scaledAreaRoot2 0.865 Rectangularity1 0.892 DistTransformRS_scaledAreaRoot7 0.878
DistTransformLP_scaledAreaRoot10 0.869 HuMoments3 0.892 235 EFdistAcc6 0.881
HuMoments1 0.864 DistTransformLP_AccScaled1 0.890 EFdistVar2 0.879
EFdist7 0.861 150 EFdistAcc3 0.889 DistTransformRS_SortScaled2 0.875
DistTransformRS_SortScaled1 0.864 DistTransformRS_Acc8 0.888 DistTransformLP_SortScaled2 0.874

65 EllipticFourierAbs32 0.870 EllipticFourierAbs44 0.889 DistTransformRS_Sort4 0.870
DistTransformLP_Acc7 0.869 EFdistScaled4 0.893 240 DistTransformRS_Sort5 0.866
DistTransformLP_scaledAreaRoot1 0.868 DistTransformRS_Acc3 0.891 EFdist6 0.866
EFdistScaled9 0.866 155 DistTransformLP_scaledAreaRoot3 0.891 EllipticFourierAbs16 0.869
DistTransformRS_AccScaled8 0.875 EllipticFourierAbs50 0.888 DistTransformRS_Sort3 0.871

70 EllipticFourierAbs65 0.873 DistTransformRS_Acc10 0.887 HuMoments2 0.866
EFdistAccScaled4 0.871 EllipticFourierAbs24 0.887 245 DistTransformRS_AccScaled2 0.866
EllipticFourierAbs19 0.872 EllipticFourierAbs17 0.890 HuMoments5 0.859
DistTransformLP_AccScaled10 0.870 160 EFdistVar9 0.893 ObjectPerimeter1 0.853
EllipticFourierAbs39 0.869 DistTransformRS_AccScaled1 0.891 DistTransformRS_AccScaled4 0.859

75 EllipticFourierAbs52 0.875 EFdist8 0.889 DistTransformRS_SortScaled8 0.865
DistTransformLP_AccScaled5 0.871 EFdist1 0.888 250 DistTransformRS_SortScaled5 0.867
DistTransformLP_Acc10 0.875 EFdistVar6 0.887 ConvexHullArea1 0.867
DistTransformLP_AccScaled9 0.872 165 EllipticFourierAbs74 0.892 ConvexHullPerimeter1 0.864
EllipticFourierAbs72 0.867 EllipticFourierAbs25 0.887 HuMoments6 0.860

80 DistTransformLP_scaledAreaRoot7 0.876 EllipticFourierAbs10 0.891 Compactness1 0.858
EFdist3 0.878 EFdistScaled6 0.889 255 HuMoments8 0.858
DistTransformLP_Sort10 0.870 EllipticFourierAbs57 0.892 HuMoments7 0.863
EllipticFourierAbs40 0.870 170 EFdistAccScaled6 0.890 ObjectArea1 0.861
DistTransformLP_scaledAreaRoot5 0.868 DistTransformLP_Acc8 0.888 HuMoments4 0.858

85 DistLPCorrelation1 0.872 EllipticFourierAbs21 0.884 DistTransformRS_Sort8 0.854
EllipticFourierAbs59 0.872 EllipticFourierAbs56 0.889 260 DistTransformRS_SortScaled7 0.854
DistTransformRS_Acc5 0.870 EllipticFourierAbs58 0.889 DistTransformRS_SortScaled6 0.849

Table J.2: Order of feature importance from forward selection tested on cotyledons.
The classi�cation accuracy (CA) indicates the classi�cation rate after the
feature has been added to the subset
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Appendix J. Forward selection Result

# Feature CA # Feature CA # Feature CA

1 DistTransformRS_scaledAreaRoot4 0.594 EllipticFourierAbs38 0.874816 175 EllipticFourierAbs6 0.886009
DistTransformRS_AccScaled7 0.700 DistTransformRS_SortScaled9 0.874963 EllipticFourierAbs4 0.884389
Convexity1 0.739 90 EllipticFourierAbs35 0.877614 DistTransformLP_AccScaled2 0.89028
DistTransformLP_SortScaled8 0.753 EllipticVariance1 0.882769 EFdistScaled1 0.892636

5 Solidity1 0.758 DistTransformRS_SortScaled4 0.890133 EllipticFourierAbs43 0.88704
DistTransformRS_AccScaled3 0.801 DistTransformLP_SortScaled1 0.888954 180 DistTransformRS_scaledAreaRoot6 0.887187
DistTransformRS_AccScaled5 0.830 EllipticFourierAbs30 0.886303 DistTransformLP_scaledAreaRoot4 0.885567
DistTransformRS_scaledAreaRoot1 0.839 95 EllipticFourierAbs60 0.885272 DistTransformLP_Acc2 0.879823
EllipticFourierAbs64 0.840 Sphericity1 0.885125 EllipticFourierAbs1 0.883947

10 DistTransformLP_Sort1 0.842 MinPlantThickness2 0.890133 EFdistAccScaled7 0.892194
EllipticFourierAbs23 0.842 EllipticFourierAbs49 0.886451 185 DistTransformLP_Sort4 0.892489
SkeletonDistanceMax1 0.851 DistTransformLP_Sort3 0.888513 DistTransformLP_Sort2 0.884389
DistTransformRS_Acc6 0.844 100 EllipticFourierAbs14 0.889102 EF_TVH_Max1 0.896171
EllipticFourierAbs53 0.846 DistTransformLP_scaledAreaRoot6 0.886303 FormFactor1 0.892047

15 DistTransformRS_Acc1 0.846 AspectRatio1 0.889102 EllipticFourierAbs55 0.891605
DistTransformLP_AccScaled4 0.849 DistTransformLP_Acc1 0.885125 190 DistTransformRS_scaledAreaRoot8 0.889396
DistTransformLP_Sort8 0.856 AverageChromaticityGreen1 0.888954 DistTransformLP_Sort6 0.885567
EllipticFourierAbs31 0.853 105 EFdistVar3 0.889838 DistTransformRS_scaledAreaRoot10 0.890133
DistTransformRS_Acc4 0.854 EFdist5 0.885567 EFdistScaled5 0.890133

20 DistTransformLP_SortScaled6 0.852 EllipticFourierAbs12 0.883211 EllipticFourierAbs7 0.892194
DistTransformLP_AccScaled3 0.855 EFdistScaled2 0.891016 195 EllipticFourierAbs15 0.895582
DistTransformRS_Acc7 0.858 SkeletonDistanceLength1 0.8919 EllipticFourierAbs48 0.89352
DistTransformLP_Acc6 0.854 110 DistTransformLP_Acc4 0.885567 EFdist2 0.890722
EllipticFourierAbs41 0.855 MinPlantThickness1 0.887629 EllipticFourierAbs9 0.887629

25 EllipticFourierAbs36 0.854 DistTransformLP_Acc9 0.886009 FractalDimension1 0.891163
EllipticFourierAbs28 0.857 EFdistVar8 0.891016 200 EllipticFourierAbs18 0.8919
DistTransformRS_scaledAreaRoot5 0.854 DistTransformRS_AccScaled9 0.889985 EllipticFourierAbs29 0.893667
DistTransformRS_Sort9 0.852 115 SkeletonDistanceMean1 0.887629 DistTransformRS_Acc2 0.887482
DistTransformRS_scaledAreaRoot9 0.856 EllipticFourierAbs2 0.886451 DistTransformRS_scaledAreaRoot3 0.891163

30 EllipticFourierAbs46 0.864 EllipticFourierAbs27 0.888513 DistTransformLP_SortScaled4 0.889691
EllipticFourierAbs63 0.860 EFdistAccScaled2 0.893078 205 EllipticFourierAbs45 0.888807
EllipticFourierAbs11 0.857 EllipticFourierAbs26 0.891458 DistTransformLP_scaledAreaRoot2 0.88866
EllipticFourierAbs37 0.860 120 EllipticFourierAbs42 0.887776 EllipticFourierAbs62 0.886451
EllipticFourierAbs66 0.859 DistTransformLP_Sort9 0.889396 RatioOfPrincipalAxes1 0.888071

35 EFdistAccScaled5 0.858 ExcessGreen1 0.887187 EllipticFourierAbs54 0.889543
DistTransformLP_AccScaled8 0.858 EllipticFourierAbs22 0.889691 210 EFdistAcc9 0.890869
DistTransformLP_SortScaled5 0.857 EllipticFourierAbs34 0.889543 EFdistAcc8 0.884094
EFdistAcc1 0.859 125 EFdist4 0.889985 DistTransformRS_AccScaled6 0.886892
EFdistAcc2 0.856 EllipticFourierAbs73 0.888365 DistTransformVariance1 0.88542

40 EFdist9 0.857 EllipticFourierAbs69 0.890427 EFdistScaled3 0.882032
EFdistAcc4 0.861 EFdistVar5 0.892047 215 EllipticFourierAbs61 0.888071
DistTransformLP_SortScaled7 0.865 EllipticFourierAbs47 0.893225 EFdistAccScaled8 0.887629
EllipticFourierAbs20 0.865 130 DistTransformRS_Sort10 0.888807 EFdistScaled8 0.884389
DistTransformLP_SortScaled9 0.858 EllipticFourierAbs77 0.88866 EFdistAcc5 0.886009

45 DistTransformLP_Sort5 0.864 EllipticFourierAbs51 0.883947 EFdistScaled7 0.884683
DistTransformLP_Sort7 0.866 EFdistVar1 0.892784 220 DistTransformMean1 0.890133
EllipticFourierAbs67 0.866 EllipticFourierAbs68 0.890869 EFdistAcc7 0.886598
EFdistAccScaled1 0.866 135 DistTransformRS_Acc9 0.888954 DistTransformLP_Acc3 0.883505
DistTransformLP_AccScaled7 0.870 ETvar1 0.887923 DistTransformLP_scaledAreaRoot8 0.881738

50 EF_TVH_Mean1 0.863 DistTransformLP_SortScaled10 0.891311 DistTransformRS_Sort1 0.887776
VarRGB1 0.867 EFdistAccScaled3 0.890722 225 EllipticFourierAbs70 0.886156
DistTransformLP_Acc5 0.873 SkeletonDistanceVariance1 0.891458 DistTransformRS_Sort7 0.88542
EFdistVar7 0.867 140 EllipticFourierAbs71 0.887629 AverageChromaticityRed1 0.883947
DistTransformLP_SortScaled3 0.871 AverageChromaticityBlue1 0.891458 DistTransformRS_Sort6 0.876878

55 CircularVariance1 0.871 DistTransformRS_SortScaled3 0.889838 Eccentricity1 0.880707
EllipticFourierAbs75 0.871 EllipticFourierAbs8 0.889396 230 DistTransformLP_AccScaled6 0.878351
DistTransformLP_scaledAreaRoot9 0.869 EllipticFourierAbs5 0.886451 EFdistVar4 0.879971
EllipticFourierAbs33 0.872 145 EllipticFourierAbs13 0.890869 EllipticFourierAbs76 0.875994
EllipticFourierAbs3 0.870 MeanDistBetweenHulls1 0.886598 DistTransformRS_Sort2 0.8757

60 DistTransformRS_scaledAreaRoot2 0.865 Rectangularity1 0.891753 DistTransformRS_scaledAreaRoot7 0.878351
DistTransformLP_scaledAreaRoot10 0.869 HuMoments3 0.8919 235 EFdistAcc6 0.881001
HuMoments1 0.864 DistTransformLP_AccScaled1 0.89028 EFdistVar2 0.87894
EFdist7 0.861 150 EFdistAcc3 0.888513 DistTransformRS_SortScaled2 0.874669
DistTransformRS_SortScaled1 0.864 DistTransformRS_Acc8 0.888365 DistTransformLP_SortScaled2 0.873638

65 EllipticFourierAbs32 0.870 EllipticFourierAbs44 0.888513 DistTransformRS_Sort4 0.869661
DistTransformLP_Acc7 0.869 EFdistScaled4 0.892636 240 DistTransformRS_Sort5 0.865538
DistTransformLP_scaledAreaRoot1 0.868 DistTransformRS_Acc3 0.891311 EFdist6 0.865538
EFdistScaled9 0.866 155 DistTransformLP_scaledAreaRoot3 0.890869 EllipticFourierAbs16 0.869219
DistTransformRS_AccScaled8 0.875 EllipticFourierAbs50 0.887923 DistTransformRS_Sort3 0.871429

70 EllipticFourierAbs65 0.873 DistTransformRS_Acc10 0.887482 HuMoments2 0.866274
EFdistAccScaled4 0.871 EllipticFourierAbs24 0.887187 245 DistTransformRS_AccScaled2 0.865685
EllipticFourierAbs19 0.872 EllipticFourierAbs17 0.889838 HuMoments5 0.859205
DistTransformLP_AccScaled10 0.870 160 EFdistVar9 0.892784 ObjectPerimeter1 0.853461
EllipticFourierAbs39 0.869 DistTransformRS_AccScaled1 0.890574 DistTransformRS_AccScaled4 0.85891

75 EllipticFourierAbs52 0.875 EFdist8 0.888513 DistTransformRS_SortScaled8 0.864801
DistTransformLP_AccScaled5 0.871 EFdist1 0.888071 250 DistTransformRS_SortScaled5 0.866568
DistTransformLP_Acc10 0.875 EFdistVar6 0.887187 ConvexHullArea1 0.866716
DistTransformLP_AccScaled9 0.872 165 EllipticFourierAbs74 0.892047 ConvexHullPerimeter1 0.863623
EllipticFourierAbs72 0.867 EllipticFourierAbs25 0.887187 HuMoments6 0.860383

80 DistTransformLP_scaledAreaRoot7 0.876 EllipticFourierAbs10 0.890574 Compactness1 0.858174
EFdist3 0.878 EFdistScaled6 0.889102 255 HuMoments8 0.858321
DistTransformLP_Sort10 0.870 EllipticFourierAbs57 0.892194 HuMoments7 0.862739
EllipticFourierAbs40 0.870 170 EFdistAccScaled6 0.890133 ObjectArea1 0.860825
DistTransformLP_scaledAreaRoot5 0.868 DistTransformLP_Acc8 0.887776 HuMoments4 0.858468

85 DistLPCorrelation1 0.872 EllipticFourierAbs21 0.883505 DistTransformRS_Sort8 0.854197
EllipticFourierAbs59 0.872 EllipticFourierAbs56 0.889396 260 DistTransformRS_SortScaled7 0.854345
DistTransformRS_Acc5 0.870 EllipticFourierAbs58 0.889249 DistTransformRS_SortScaled6 0.849043

Table J.3: Order of feature importance from forward selection tested on foliages. The
classi�cation accuracy (CA) indicates the classi�cation rate after the feature
has been added to the subset
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AppendixK
Recursive feature elimination

Table K.1 shows the features ranged from the most to the least important
feature based on recursive feature elimination. tested on plants.

Table K.2 shows the features ranged from the most to the least important
feature based on recursive feature elimination tested on cotyledons.

Table K.3 shows the features ranged from the most to the least important
feature based on recursive feature elimination tested on foliages.
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Appendix K. Recursive feature elimination

# Feature CA # Feature CA # Feature CA

1 ExcessGreen1 0.470 DistTransformLP_SortScaled8 0.956 175 DistTransformRS_Acc4 0.945
DistTransformLP_Sort2 0.690 EFdistAcc2 0.955 DistTransformRS_Acc1 0.945
Compactness1 0.819 90 EllipticFourierAbs34 0.957 EFdistAcc7 0.946
AverageChromaticityRed1 0.871 DistTransformLP_SortScaled3 0.953 EllipticFourierAbs13 0.944

5 DistTransformRS_AccScaled4 0.903 ConvexHullArea1 0.954 EllipticFourierAbs21 0.944
EFdistAccScaled4 0.916 DistTransformLP_scaledAreaRoot5 0.954 180 DistTransformRS_Acc8 0.945
AverageChromaticityGreen1 0.927 DistTransformRS_scaledAreaRoot10 0.954 DistTransformRS_Sort7 0.944
Rectangularity1 0.932 95 DistTransformLP_Acc5 0.952 DistTransformLP_scaledAreaRoot3 0.945
DistTransformLP_SortScaled5 0.939 DistTransformLP_AccScaled4 0.953 DistTransformLP_Sort10 0.944

10 EFdistAccScaled7 0.942 EFdistScaled1 0.950 HuMoments4 0.945
EFdist5 0.945 EllipticFourierAbs59 0.951 185 DistTransformLP_scaledAreaRoot4 0.944
EFdistScaled3 0.947 DistTransformLP_SortScaled6 0.952 DistTransformRS_AccScaled8 0.945
EFdist4 0.945 100 EFdistAcc8 0.950 EllipticVariance1 0.947
EllipticFourierAbs4 0.948 EllipticFourierAbs7 0.950 DistTransformRS_SortScaled5 0.946

15 EllipticFourierAbs58 0.948 EFdistAcc4 0.949 EF_TVH_Mean1 0.946
DistTransformLP_scaledAreaRoot10 0.950 DistTransformRS_scaledAreaRoot5 0.950 190 DistLPCorrelation1 0.946
EllipticFourierAbs33 0.950 DistTransformLP_scaledAreaRoot6 0.949 DistTransformRS_AccScaled2 0.948
DistTransformLP_AccScaled10 0.948 105 EllipticFourierAbs51 0.949 EllipticFourierAbs29 0.947
EFdistAccScaled3 0.951 AspectRatio1 0.949 EllipticFourierAbs8 0.947

20 Solidity1 0.950 EllipticFourierAbs74 0.949 EllipticFourierAbs67 0.947
DistTransformRS_Acc6 0.951 DistTransformLP_Acc4 0.949 195 HuMoments3 0.947
EllipticFourierAbs56 0.952 EFdistAcc3 0.947 DistTransformLP_AccScaled9 0.946
EFdistAccScaled5 0.950 110 EllipticFourierAbs63 0.950 DistTransformRS_AccScaled6 0.946
DistTransformLP_scaledAreaRoot1 0.952 DistTransformLP_AccScaled7 0.948 EllipticFourierAbs50 0.946

25 EllipticFourierAbs66 0.950 EllipticFourierAbs57 0.949 DistTransformVariance1 0.945
EllipticFourierAbs25 0.951 SkeletonDistanceMax1 0.949 200 DistTransformLP_AccScaled6 0.945
DistTransformRS_AccScaled3 0.952 EFdistScaled9 0.950 EFdistAcc5 0.943
EFdist3 0.951 115 DistTransformLP_Sort9 0.951 DistTransformRS_AccScaled7 0.944
EFdist2 0.955 DistTransformLP_Acc2 0.950 DistTransformRS_Sort9 0.945

30 EllipticFourierAbs9 0.952 HuMoments6 0.950 EFdistVar5 0.943
CircularVariance1 0.954 EFdistVar1 0.949 205 EllipticFourierAbs35 0.943
EllipticFourierAbs55 0.954 ETvar1 0.950 EllipticFourierAbs49 0.943
EllipticFourierAbs69 0.953 120 DistTransformRS_Acc2 0.951 DistTransformLP_scaledAreaRoot7 0.943
EllipticFourierAbs39 0.951 EllipticFourierAbs70 0.950 DistTransformLP_SortScaled1 0.944

35 EFdistVar2 0.956 EFdistVar4 0.949 EFdistScaled8 0.943
EFdist8 0.954 DistTransformLP_AccScaled1 0.950 210 EFdistScaled2 0.944
DistTransformLP_AccScaled3 0.954 DistTransformRS_SortScaled9 0.948 EFdistVar6 0.941
EllipticFourierAbs24 0.953 125 EllipticFourierAbs72 0.948 FractalDimension1 0.943
EllipticFourierAbs1 0.955 EllipticFourierAbs18 0.947 ObjectPerimeter1 0.943

40 SkeletonDistanceMean1 0.953 RatioOfPrincipalAxes1 0.946 HuMoments7 0.942
DistTransformRS_Sort3 0.955 EllipticFourierAbs26 0.945 215 EFdistVar7 0.943
Convexity1 0.955 EllipticFourierAbs14 0.947 EllipticFourierAbs42 0.942
EFdistAcc6 0.955 130 EllipticFourierAbs37 0.948 EllipticFourierAbs48 0.942
VarRGB1 0.957 EllipticFourierAbs11 0.947 EllipticFourierAbs30 0.940

45 EllipticFourierAbs47 0.956 DistTransformLP_scaledAreaRoot8 0.945 DistTransformRS_AccScaled9 0.943
EllipticFourierAbs76 0.956 EllipticFourierAbs75 0.946 220 EllipticFourierAbs60 0.941
DistTransformLP_Acc7 0.958 DistTransformLP_Sort1 0.945 MinPlantThickness2 0.942
EllipticFourierAbs23 0.956 135 MeanDistBetweenHulls1 0.944 DistTransformRS_Sort1 0.943
EFdistScaled4 0.955 EllipticFourierAbs28 0.945 EllipticFourierAbs22 0.943

50 EllipticFourierAbs12 0.956 DistTransformLP_Acc6 0.946 DistTransformRS_SortScaled2 0.942
EllipticFourierAbs43 0.955 DistTransformRS_scaledAreaRoot6 0.946 225 FormFactor1 0.942
EllipticFourierAbs20 0.955 DistTransformMean1 0.946 EllipticFourierAbs65 0.943
EllipticFourierAbs41 0.956 140 EllipticFourierAbs3 0.947 EllipticFourierAbs77 0.943
EFdistAccScaled8 0.957 DistTransformLP_SortScaled2 0.947 DistTransformLP_scaledAreaRoot9 0.943

55 DistTransformRS_Sort5 0.956 EFdist9 0.947 EllipticFourierAbs15 0.941
EllipticFourierAbs40 0.957 DistTransformRS_Acc5 0.947 230 EFdistVar9 0.943
EFdistVar3 0.957 DistTransformLP_Sort6 0.947 EllipticFourierAbs64 0.944
EFdistVar8 0.954 145 Sphericity1 0.948 DistTransformLP_Sort4 0.945
DistTransformLP_Acc1 0.957 DistTransformLP_Acc9 0.947 HuMoments5 0.944

60 EFdistAcc1 0.955 EllipticFourierAbs54 0.948 DistTransformLP_Sort3 0.945
DistTransformLP_Sort7 0.956 EllipticFourierAbs27 0.946 235 DistTransformRS_scaledAreaRoot1 0.943
EFdistScaled7 0.955 DistTransformRS_Acc10 0.947 DistTransformRS_AccScaled1 0.943
DistTransformRS_SortScaled3 0.957 150 DistTransformLP_Acc3 0.948 DistTransformLP_AccScaled5 0.941
EllipticFourierAbs71 0.956 EFdistScaled6 0.946 DistTransformRS_scaledAreaRoot2 0.942

65 DistTransformLP_Sort5 0.956 EllipticFourierAbs36 0.947 EFdist1 0.941
DistTransformLP_AccScaled2 0.957 DistTransformRS_Sort4 0.946 240 EllipticFourierAbs19 0.941
DistTransformRS_AccScaled5 0.958 EllipticFourierAbs6 0.944 DistTransformRS_SortScaled1 0.940
DistTransformLP_scaledAreaRoot2 0.957 155 EllipticFourierAbs10 0.943 DistTransformRS_Acc7 0.942
EllipticFourierAbs62 0.956 EllipticFourierAbs73 0.946 EllipticFourierAbs52 0.942

70 EllipticFourierAbs53 0.958 DistTransformRS_SortScaled6 0.945 DistTransformRS_Sort10 0.942
EFdist7 0.956 DistTransformLP_Acc10 0.947 245 DistTransformRS_Acc3 0.941
DistTransformRS_SortScaled8 0.958 DistTransformRS_scaledAreaRoot4 0.945 SkeletonDistanceLength1 0.942
DistTransformRS_Sort2 0.956 160 ConvexHullPerimeter1 0.946 HuMoments8 0.941
AverageChromaticityBlue1 0.958 ObjectArea1 0.945 DistTransformLP_Acc8 0.940

75 EllipticFourierAbs46 0.960 EFdistAccScaled6 0.944 EFdistAccScaled1 0.942
DistTransformLP_Sort8 0.957 EllipticFourierAbs5 0.947 250 DistTransformRS_Sort6 0.940
EllipticFourierAbs31 0.959 EF_TVH_Max1 0.945 EllipticFourierAbs68 0.941
EFdist6 0.959 165 DistTransformRS_Acc9 0.946 SkeletonDistanceVariance1 0.940
EllipticFourierAbs45 0.959 DistTransformRS_scaledAreaRoot7 0.946 DistTransformLP_SortScaled7 0.939

80 EllipticFourierAbs61 0.957 Eccentricity1 0.946 EllipticFourierAbs38 0.939
DistTransformLP_AccScaled8 0.957 DistTransformLP_SortScaled9 0.943 255 DistTransformRS_scaledAreaRoot3 0.939
EllipticFourierAbs44 0.957 DistTransformRS_SortScaled4 0.946 DistTransformRS_scaledAreaRoot8 0.939
DistTransformLP_SortScaled10 0.955 170 HuMoments2 0.944 HuMoments1 0.938
EllipticFourierAbs32 0.955 EllipticFourierAbs16 0.944 MinPlantThickness1 0.940

85 DistTransformLP_SortScaled4 0.956 DistTransformRS_SortScaled7 0.945 EFdistScaled5 0.940
EllipticFourierAbs17 0.955 EFdistAccScaled2 0.945 260 EllipticFourierAbs2 0.939
EFdistAcc9 0.955 DistTransformRS_scaledAreaRoot9 0.946 DistTransformRS_Sort8 0.939

Table K.1: Order of feature importance from recursive feature elimination tested on
plants.
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# Feature CA # Feature CA # Feature CA

1 DistTransformRS_SortScaled9 0.590 EF_TVH_Mean1 0.885 175 EllipticFourierAbs19 0.879
ObjectArea1 0.727 DistTransformRS_Acc3 0.886 DistTransformRS_Acc9 0.882
DistTransformRS_SortScaled2 0.772 90 EllipticFourierAbs46 0.885 EllipticFourierAbs26 0.881
DistTransformRS_AccScaled4 0.804 EllipticFourierAbs51 0.885 DistTransformRS_Acc10 0.879

5 DistTransformRS_AccScaled2 0.820 DistTransformLP_Acc6 0.887 EF_TVH_Max1 0.880
VarRGB1 0.837 AverageChromaticityGreen1 0.885 180 EllipticFourierAbs55 0.880
DistTransformLP_SortScaled6 0.845 ConvexHullArea1 0.885 EllipticFourierAbs37 0.878
EllipticFourierAbs58 0.849 95 DistTransformRS_Sort5 0.887 EllipticFourierAbs73 0.882
DistTransformLP_Sort8 0.859 DistTransformLP_scaledAreaRoot5 0.885 DistTransformVariance1 0.881

10 DistTransformRS_scaledAreaRoot5 0.865 DistTransformLP_scaledAreaRoot7 0.883 AspectRatio1 0.878
DistTransformRS_SortScaled5 0.868 DistTransformLP_AccScaled8 0.882 185 RatioOfPrincipalAxes1 0.880
DistTransformMean1 0.872 ExcessGreen1 0.887 DistTransformLP_Acc10 0.881
DistTransformLP_Sort10 0.871 100 DistTransformRS_scaledAreaRoot10 0.881 EllipticFourierAbs42 0.880
DistTransformRS_SortScaled7 0.874 DistTransformLP_AccScaled6 0.881 DistTransformLP_SortScaled9 0.875

15 DistTransformLP_SortScaled10 0.877 EllipticFourierAbs48 0.883 EllipticVariance1 0.878
DistTransformRS_AccScaled8 0.878 EllipticFourierAbs77 0.881 190 EllipticFourierAbs32 0.877
HuMoments4 0.881 DistTransformRS_SortScaled4 0.882 DistTransformLP_Sort1 0.875
EllipticFourierAbs62 0.885 105 EFdistVar4 0.881 EllipticFourierAbs44 0.876
DistTransformLP_SortScaled8 0.887 DistTransformRS_scaledAreaRoot4 0.881 DistTransformLP_Acc3 0.876

20 DistTransformLP_scaledAreaRoot4 0.888 EllipticFourierAbs72 0.880 EllipticFourierAbs23 0.875
EllipticFourierAbs38 0.884 EFdistAccScaled5 0.880 195 EllipticFourierAbs15 0.874
SkeletonDistanceMax1 0.883 EllipticFourierAbs30 0.881 DistTransformRS_AccScaled9 0.877
EFdistScaled1 0.885 110 EFdistAcc6 0.877 SkeletonDistanceMean1 0.878
EllipticFourierAbs43 0.884 DistTransformLP_scaledAreaRoot9 0.877 DistTransformLP_scaledAreaRoot3 0.878

25 DistTransformRS_AccScaled6 0.883 EllipticFourierAbs74 0.880 Convexity1 0.877
DistTransformRS_SortScaled3 0.883 DistTransformRS_Sort1 0.879 200 DistTransformRS_Acc6 0.878
ObjectPerimeter1 0.884 DistTransformLP_Sort5 0.881 EllipticFourierAbs7 0.879
EllipticFourierAbs21 0.881 115 DistTransformLP_SortScaled1 0.877 HuMoments6 0.877
DistTransformRS_Acc5 0.882 DistTransformLP_AccScaled2 0.880 DistTransformLP_Acc1 0.879

30 DistTransformLP_Sort6 0.881 DistTransformRS_scaledAreaRoot8 0.878 EllipticFourierAbs16 0.877
EllipticFourierAbs68 0.882 EllipticFourierAbs12 0.878 205 DistTransformLP_scaledAreaRoot2 0.878
HuMoments7 0.885 DistTransformRS_Sort6 0.878 EllipticFourierAbs8 0.876
EFdistAccScaled7 0.886 120 DistTransformLP_Acc9 0.878 DistLPCorrelation1 0.877
EllipticFourierAbs18 0.885 EllipticFourierAbs47 0.878 EllipticFourierAbs4 0.877

35 EFdistVar5 0.887 DistTransformRS_scaledAreaRoot1 0.878 EFdistAcc9 0.876
EllipticFourierAbs60 0.887 DistTransformRS_scaledAreaRoot7 0.879 210 EFdistScaled8 0.878
DistTransformLP_SortScaled5 0.886 EFdistAcc3 0.879 EFdist3 0.878
MinPlantThickness1 0.888 125 EllipticFourierAbs11 0.879 HuMoments8 0.878
DistTransformRS_scaledAreaRoot6 0.882 EFdistAcc1 0.877 EFdistVar8 0.877

40 EllipticFourierAbs31 0.884 MeanDistBetweenHulls1 0.878 EllipticFourierAbs34 0.877
DistTransformLP_SortScaled3 0.884 EFdistAcc5 0.880 215 EllipticFourierAbs67 0.880
DistTransformRS_scaledAreaRoot2 0.884 EFdistScaled2 0.878 EFdistAcc2 0.878
EllipticFourierAbs10 0.883 130 EFdist6 0.880 EllipticFourierAbs64 0.877
DistTransformLP_Sort2 0.883 EllipticFourierAbs71 0.878 EllipticFourierAbs69 0.878

45 DistTransformRS_SortScaled1 0.885 Eccentricity1 0.878 DistTransformLP_scaledAreaRoot10 0.876
EllipticFourierAbs59 0.885 DistTransformLP_Acc7 0.880 220 EllipticFourierAbs17 0.876
AverageChromaticityRed1 0.886 EllipticFourierAbs24 0.880 EFdistScaled5 0.876
ETvar1 0.887 135 CircularVariance1 0.880 EllipticFourierAbs14 0.877
DistTransformLP_Sort3 0.886 EFdist2 0.878 DistTransformRS_Sort8 0.876

50 DistTransformLP_SortScaled4 0.887 DistTransformRS_Acc2 0.879 DistTransformLP_AccScaled9 0.875
EFdistAcc8 0.888 Sphericity1 0.878 225 DistTransformLP_Acc2 0.875
EllipticFourierAbs1 0.885 SkeletonDistanceVariance1 0.878 EFdistVar9 0.877
EFdistAccScaled3 0.887 140 EFdistVar7 0.880 EFdistScaled4 0.877
EFdistAccScaled6 0.887 DistTransformRS_Sort2 0.881 EFdist1 0.875

55 SkeletonDistanceLength1 0.889 EFdistAccScaled2 0.879 EFdistScaled9 0.876
EllipticFourierAbs65 0.885 DistTransformLP_Acc5 0.880 230 EllipticFourierAbs5 0.876
EllipticFourierAbs57 0.885 DistTransformRS_AccScaled5 0.877 EllipticFourierAbs33 0.876
EFdistVar1 0.885 145 DistTransformRS_scaledAreaRoot9 0.878 EllipticFourierAbs50 0.875
EllipticFourierAbs13 0.884 EllipticFourierAbs39 0.879 DistTransformLP_Acc8 0.875

60 MinPlantThickness2 0.882 EFdist8 0.879 FractalDimension1 0.875
DistTransformLP_AccScaled5 0.886 DistTransformLP_Sort4 0.881 235 DistTransformRS_Sort10 0.877
EllipticFourierAbs28 0.883 DistTransformRS_Acc8 0.880 DistTransformRS_scaledAreaRoot3 0.874
EFdistAcc4 0.884 150 EllipticFourierAbs49 0.879 DistTransformLP_AccScaled3 0.873
EllipticFourierAbs66 0.886 DistTransformLP_AccScaled1 0.879 EllipticFourierAbs75 0.874

65 EllipticFourierAbs2 0.887 Rectangularity1 0.879 EllipticFourierAbs36 0.875
EllipticFourierAbs41 0.886 EFdist9 0.881 240 ConvexHullPerimeter1 0.871
DistTransformLP_AccScaled4 0.885 EllipticFourierAbs22 0.881 DistTransformRS_SortScaled6 0.868
EFdistScaled6 0.887 155 EllipticFourierAbs40 0.880 EllipticFourierAbs52 0.868
EFdistVar3 0.886 EFdist5 0.880 EllipticFourierAbs6 0.867

70 EllipticFourierAbs54 0.886 EFdistAcc7 0.880 EllipticFourierAbs3 0.868
EFdist4 0.885 EFdistScaled7 0.880 245 EllipticFourierAbs29 0.867
DistTransformLP_SortScaled2 0.885 EllipticFourierAbs20 0.880 DistTransformLP_AccScaled7 0.867
DistTransformRS_AccScaled3 0.885 160 DistTransformLP_Acc4 0.879 HuMoments2 0.868
DistTransformLP_scaledAreaRoot8 0.885 DistTransformRS_AccScaled1 0.878 EllipticFourierAbs53 0.868

75 EFdistScaled3 0.884 DistTransformRS_Sort3 0.879 EllipticFourierAbs27 0.869
EllipticFourierAbs25 0.885 DistTransformLP_Sort9 0.881 250 EllipticFourierAbs70 0.868
DistTransformLP_AccScaled10 0.887 Solidity1 0.880 DistTransformRS_Sort4 0.869
DistTransformRS_Acc4 0.886 165 DistTransformRS_Sort7 0.879 DistTransformLP_SortScaled7 0.868
EFdistAccScaled4 0.885 EllipticFourierAbs9 0.878 DistTransformLP_scaledAreaRoot6 0.868

80 DistTransformRS_Acc7 0.887 DistTransformLP_scaledAreaRoot1 0.878 EllipticFourierAbs56 0.867
DistTransformRS_AccScaled7 0.885 DistTransformRS_SortScaled8 0.878 255 DistTransformRS_Sort9 0.867
EllipticFourierAbs76 0.887 HuMoments1 0.881 Compactness1 0.868
EFdist7 0.882 170 EFdistAccScaled1 0.880 DistTransformLP_Sort7 0.869
EllipticFourierAbs63 0.885 FormFactor1 0.880 EllipticFourierAbs35 0.865

85 EFdistVar2 0.887 EFdistVar6 0.880 DistTransformRS_Acc1 0.867
EllipticFourierAbs45 0.885 EFdistAccScaled8 0.881 260 HuMoments5 0.867
EllipticFourierAbs61 0.885 HuMoments3 0.880 AverageChromaticityBlue1 0.867

Table K.2: Order of feature importance from recursive elimination tested on cotyle-
dons.
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Appendix K. Recursive feature elimination

# Feature CA # Feature CA # Feature CA

1 DistTransformRS_SortScaled5 0.537 EllipticFourierAbs55 0.879 175 EllipticFourierAbs75 0.882
ObjectArea1 0.701 DistTransformRS_scaledAreaRoot6 0.874 ConvexHullPerimeter1 0.876
DistTransformRS_AccScaled2 0.791 90 DistTransformLP_scaledAreaRoot1 0.878 EllipticFourierAbs74 0.880
ConvexHullArea1 0.810 DistTransformRS_scaledAreaRoot10 0.880 EllipticFourierAbs46 0.878

5 DistTransformRS_SortScaled7 0.825 EFdist6 0.881 EllipticFourierAbs17 0.877
HuMoments7 0.828 DistTransformRS_Sort5 0.881 180 HuMoments8 0.879
EllipticVariance1 0.837 EllipticFourierAbs11 0.882 DistTransformLP_Sort4 0.884
HuMoments1 0.834 95 EFdistVar5 0.876 EllipticFourierAbs21 0.883
DistTransformRS_AccScaled4 0.849 DistTransformRS_Acc9 0.878 EFdistVar8 0.879

10 DistTransformRS_AccScaled6 0.848 EllipticFourierAbs54 0.881 DistTransformRS_Acc3 0.878
HuMoments3 0.850 EllipticFourierAbs72 0.879 185 DistTransformLP_SortScaled3 0.882
DistTransformRS_Sort7 0.855 EllipticFourierAbs4 0.876 EllipticFourierAbs42 0.880
HuMoments2 0.867 100 DistTransformLP_AccScaled10 0.880 DistTransformRS_Acc5 0.877
EllipticFourierAbs67 0.864 EllipticFourierAbs44 0.875 EllipticFourierAbs23 0.882

15 EFdistScaled5 0.863 EllipticFourierAbs28 0.876 EFdistScaled2 0.880
EllipticFourierAbs30 0.863 EllipticFourierAbs61 0.880 190 EllipticFourierAbs27 0.885
DistTransformRS_Sort10 0.860 EllipticFourierAbs14 0.877 Rectangularity1 0.881
DistTransformLP_Sort7 0.863 105 EF_TVH_Mean1 0.881 DistTransformLP_Acc6 0.879
DistTransformLP_SortScaled10 0.862 DistTransformRS_Acc7 0.879 DistTransformRS_Sort2 0.880

20 EllipticFourierAbs26 0.866 EllipticFourierAbs52 0.881 SkeletonDistanceLength1 0.881
EFdist7 0.868 EllipticFourierAbs71 0.882 195 DistTransformLP_scaledAreaRoot6 0.878
EFdistAcc2 0.866 DistTransformLP_Acc1 0.884 DistTransformLP_Sort2 0.878
EFdistVar9 0.867 110 EllipticFourierAbs64 0.875 EllipticFourierAbs40 0.875
EFdist5 0.866 EllipticFourierAbs16 0.880 DistTransformRS_Sort1 0.873

25 Eccentricity1 0.861 EllipticFourierAbs10 0.877 DistTransformRS_Sort6 0.878
EllipticFourierAbs62 0.864 EllipticFourierAbs69 0.877 200 DistTransformRS_scaledAreaRoot3 0.877
DistTransformMean1 0.861 EllipticFourierAbs7 0.879 DistTransformLP_AccScaled2 0.881
EllipticFourierAbs25 0.867 115 DistTransformLP_scaledAreaRoot7 0.879 DistTransformLP_scaledAreaRoot10 0.880
DistTransformRS_Sort4 0.861 HuMoments5 0.881 DistTransformLP_Sort5 0.884

30 DistTransformLP_AccScaled1 0.859 EllipticFourierAbs65 0.881 DistTransformLP_SortScaled5 0.883
EllipticFourierAbs41 0.864 EllipticFourierAbs36 0.882 205 EllipticFourierAbs70 0.882
DistTransformRS_SortScaled4 0.860 EllipticFourierAbs13 0.879 EllipticFourierAbs56 0.881
DistTransformRS_AccScaled5 0.864 120 DistTransformLP_AccScaled5 0.879 EFdist8 0.877
DistTransformLP_SortScaled4 0.863 DistTransformLP_Sort8 0.881 DistTransformLP_Acc9 0.882

35 EFdistAccScaled3 0.870 DistTransformRS_Acc2 0.881 EFdist1 0.881
DistTransformLP_Acc2 0.861 EllipticFourierAbs50 0.886 210 EFdistVar7 0.879
DistTransformRS_Sort8 0.868 EFdist2 0.885 Compactness1 0.883
EllipticFourierAbs60 0.865 125 EllipticFourierAbs31 0.882 EFdistScaled7 0.881
DistTransformLP_Acc4 0.866 EFdistScaled8 0.875 DistTransformRS_AccScaled7 0.878

40 DistTransformRS_SortScaled8 0.878 DistTransformLP_Acc3 0.878 EFdistAccScaled4 0.880
DistTransformLP_SortScaled7 0.872 EllipticFourierAbs18 0.878 215 DistTransformLP_AccScaled6 0.880
DistTransformRS_Acc6 0.871 EllipticFourierAbs33 0.881 EFdistAcc7 0.880
EFdistScaled4 0.870 130 FormFactor1 0.881 EllipticFourierAbs6 0.880
EFdistAcc6 0.872 CircularVariance1 0.878 DistTransformRS_SortScaled9 0.878

45 EFdistVar4 0.873 AspectRatio1 0.884 EllipticFourierAbs43 0.880
DistTransformLP_AccScaled8 0.874 EllipticFourierAbs73 0.881 220 SkeletonDistanceVariance1 0.882
DistTransformRS_Sort9 0.871 EFdistAcc9 0.878 DistTransformRS_SortScaled2 0.872
DistLPCorrelation1 0.872 135 EllipticFourierAbs49 0.881 ExcessGreen1 0.875
EFdistAcc3 0.870 DistTransformRS_scaledAreaRoot4 0.879 AverageChromaticityRed1 0.876

50 DistTransformLP_scaledAreaRoot4 0.878 DistTransformLP_AccScaled9 0.878 EFdistScaled3 0.873
EllipticFourierAbs39 0.868 EllipticFourierAbs29 0.881 225 EFdistAccScaled2 0.876
EllipticFourierAbs22 0.875 EllipticFourierAbs45 0.878 DistTransformRS_Sort3 0.876
EFdistAccScaled1 0.874 140 DistTransformLP_SortScaled8 0.880 DistTransformRS_scaledAreaRoot1 0.882
EFdistAccScaled8 0.869 EllipticFourierAbs58 0.883 RatioOfPrincipalAxes1 0.878

55 EllipticFourierAbs24 0.875 EllipticFourierAbs8 0.885 DistTransformRS_SortScaled3 0.881
MeanDistBetweenHulls1 0.875 EllipticFourierAbs9 0.887 230 EllipticFourierAbs68 0.875
EllipticFourierAbs57 0.870 DistTransformRS_AccScaled9 0.875 DistTransformRS_Acc10 0.875
EFdistAcc5 0.874 145 DistTransformLP_Sort3 0.877 EFdist9 0.877
EFdistAccScaled7 0.871 DistTransformVariance1 0.880 DistTransformLP_AccScaled7 0.878

60 Sphericity1 0.870 DistTransformRS_SortScaled1 0.880 DistTransformLP_Acc8 0.878
AverageChromaticityGreen1 0.873 EFdistScaled6 0.882 235 EllipticFourierAbs19 0.878
DistTransformLP_Sort10 0.877 EFdistAccScaled5 0.880 Convexity1 0.875
EFdistAccScaled6 0.875 150 DistTransformLP_Acc7 0.879 DistTransformLP_SortScaled2 0.874
DistTransformLP_SortScaled9 0.874 DistTransformLP_Sort1 0.883 DistTransformRS_AccScaled1 0.879

65 DistTransformRS_scaledAreaRoot7 0.875 DistTransformLP_SortScaled1 0.880 DistTransformRS_Acc1 0.876
DistTransformLP_Sort9 0.871 DistTransformLP_SortScaled6 0.881 240 DistTransformRS_AccScaled8 0.875
EllipticFourierAbs37 0.876 EllipticFourierAbs63 0.880 DistTransformLP_scaledAreaRoot8 0.872
DistTransformLP_Acc10 0.876 155 EFdistVar6 0.883 DistTransformRS_scaledAreaRoot8 0.876
EllipticFourierAbs51 0.873 DistTransformLP_scaledAreaRoot5 0.883 EllipticFourierAbs12 0.871

70 DistTransformRS_scaledAreaRoot2 0.877 DistTransformRS_scaledAreaRoot9 0.877 EllipticFourierAbs38 0.873
VarRGB1 0.878 EllipticFourierAbs20 0.883 245 HuMoments4 0.868
DistTransformRS_scaledAreaRoot5 0.874 EllipticFourierAbs5 0.884 EFdistScaled9 0.873
EFdistVar1 0.876 160 EllipticFourierAbs53 0.883 DistTransformLP_Acc5 0.871
EllipticFourierAbs76 0.877 Solidity1 0.878 AverageChromaticityBlue1 0.871

75 EllipticFourierAbs77 0.879 EFdistAcc8 0.879 EFdistVar3 0.866
EllipticFourierAbs34 0.879 EllipticFourierAbs59 0.883 250 DistTransformLP_AccScaled3 0.873
EllipticFourierAbs35 0.878 EFdistVar2 0.881 EllipticFourierAbs2 0.869
EllipticFourierAbs66 0.874 165 EFdistAcc4 0.880 ObjectPerimeter1 0.860
FractalDimension1 0.880 DistTransformRS_Acc4 0.886 DistTransformRS_AccScaled3 0.857

80 EllipticFourierAbs48 0.875 EllipticFourierAbs3 0.885 DistTransformLP_scaledAreaRoot2 0.857
EllipticFourierAbs47 0.880 EllipticFourierAbs15 0.886 255 SkeletonDistanceMax1 0.859
EFdistScaled1 0.879 MinPlantThickness1 0.884 DistTransformRS_SortScaled6 0.845
DistTransformLP_scaledAreaRoot3 0.876 170 DistTransformRS_Acc8 0.876 EllipticFourierAbs32 0.845
ETvar1 0.876 DistTransformLP_Sort6 0.881 DistTransformLP_AccScaled4 0.849

85 EF_TVH_Max1 0.881 EllipticFourierAbs1 0.883 EFdist4 0.849
EFdist3 0.878 SkeletonDistanceMean1 0.881 260 DistTransformLP_scaledAreaRoot9 0.848
MinPlantThickness2 0.881 EFdistAcc1 0.884 HuMoments6 0.846

Table K.3: Order of feature importance from recursive elimination tested on foliages.
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AppendixL
Backward elimination MDA

The highest performing subset of features for the classi�ers kNN and MVG
with and without MDA are shown in Table L.1.

MVG MVG+MDA kNN kNN+MDA
nFeatures CA nFeatures CA nFeatures CA nFeatures CA

Plant 64 0.8964 113 0.9542 103 0.9387 135 0.9634
Cotyledon 159 0.8638 400 0.9078 313 0.8861 411 0.9187

Foliage 130 0.9069 282 0.9195 143 0.9097 305 0.9285

Table L.1: Classi�cation accuracy (CA) of kNN for the optimal subset in accordance
with Recursive Feature Elimination using Multiple Discriminant Analysis.

The running classi�cation accuracy when using the MDA backward elim-
ination procedure for kNN, kNN+MDA, MVG and MVG+MDA is seen in
�gure L.1. The MDA backward elimination procedure works well for plants
as the classi�cation accuracies peaks with a low number of features. The pro-
cedure do not perform optimal for cotyledon and foliage leaves as the optimal
classi�cation accuracies are achieved with a high number of features. The
reason for this is presumably that classes are not divided in single Gaussian
like clusters.
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Appendix L. Backward elimination MDA
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(a) Classi�cation accuracy for a decreasing number of features for plants.
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(b) Classi�cation accuracy for a decreasing number of features for cotyledons.
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(c) Classi�cation accuracy for a decreasing number of features for foliage.

Figure L.1: Classi�cation accuracy for a decreasing number of features for plants, cotyle-
dons and foliage leaves for kNN, kNN+MDA, MVG and MVG+MDA using
the MDA backward elimination procedure.
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AppendixM
Belief Matrix Example

In the three tables below the confusion matrix and the belief matrix of the
kNN classi�er using k = 1, 1, 1 is presented.
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Appendix M. Belief Matrix Example

Spe. 1 2 3 4 5 6 7 Tot. Spe. 1 2 3 4 5 6 7

1 242 0 2 0 0 0 0 244 1 0.992 0 0.008 0 0 0 0

2 2 185 0 0 1 0 0 188 2 0.011 0.984 0 0 0.005 0 0

3 3 8 316 1 0 1 4 333 3 0.009 0.024 0.949 0.003 0 0.003 0.012

4 1 2 2 567 8 12 3 595 4 0.002 0.003 0.003 0.953 0.013 0.020 0.005

5 1 3 2 2 691 9 2 710 5 0.001 0.004 0.003 0.003 0.973 0.013 0.003

6 0 0 0 4 3 232 1 240 6 0 0 0 0.017 0.013 0.967 0.004

7 1 0 3 1 0 1 120 126 7 0.008 0 0.024 0.008 0 0.008 0.952

True label True label

R
es

u
lt

 l
a
b
el

R
es

u
lt

 l
a
b
el

Table M.1: An example of a confusion and belief matrix for plants using the kNN clas-
si�er using k = 1.

Spe. 101 102 103 104 105 106 107 Tot. Spe. 101 102 103 104 105 106 107

101 164 0 4 1 3 3 7 182 101 0.901 0 0.022 0.005 0.016 0.016 0.038

102 0 0 0 0 0 0 0 0 102 0 0 0 0 0 0 0

103 13 0 799 8 7 2 10 839 103 0.015 0 0.952 0.010 0.008 0.002 0.012

104 5 0 9 318 16 50 6 404 104 0.012 0 0.022 0.787 0.040 0.124 0.015

105 5 0 7 24 1140 41 7 1224 105 0.004 0 0.006 0.020 0.931 0.033 0.006

106 2 0 0 48 24 266 17 357 106 0.006 0 0 0.134 0.067 0.745 0.048

107 5 0 13 5 9 24 347 403 107 0.012 0 0.032 0.012 0.022 0.060 0.861

True label

R
es

u
lt

 l
a
b
el

True label

R
es

u
lt

 l
a
b
el

Table M.2: An example of a confusion and belief matrix for cotyledon leaves using the
kNN classi�er using k = 1.

Spe. 201 202 203 204 205 206 207 Tot. Spe. 201 202 204 205 206 207

201 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0

202 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0

203 0 0 13 5 0 6 0 24 203 0 0 0.542 0.208 0 0.250 0

204 0 0 2 430 8 18 14 472 204 0 0 0.004 0.911 0.017 0.038 0.030

205 0 0 0 10 274 20 8 312 205 0 0 0 0.032 0.878 0.064 0.026

206 0 0 8 13 19 250 9 299 206 0 0 0.027 0.043 0.064 0.836 0.030

207 0 0 0 15 8 28 200 251 207 0 0 0 0.060 0.032 0.112 0.797

True label

R
es

u
lt

 l
a
b
el

True label

R
es

u
lt

 l
a
b
el

Table M.3: An example of a confusion and belief matrix for foliage leaves using the kNN
classi�er using k = 1.
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AppendixN
Wrong identifications

Five examples of wrong identi�cations are shown for each species to present
di�culties for the di�erent species1. Figure N.1 shows 5 of the 16 Maize
(species 1) plants that have been classi�ed incorrectly out of the 250 plant
samples. Figure N.2 shows 5 of the 9 Maize (species 1) plants that have been
classi�ed incorrectly out of the 198 plant samples. Figure N.3 shows 5 of the
5 Maize (species 2) plants that have been classi�ed incorrectly out of the 459
plant samples. Figure N.4 shows 5 of the 9 Maize (species 3) plants that have
been classi�ed incorrectly out of the 577 plant samples. Figure N.5 shows 5
of the 9 Maize (species 4) plants that have been classi�ed incorrectly out of
the 706 plant samples. Figure N.6 shows 5 of the 16 Maize (species 5) plants
that have been classi�ed incorrectly out of the 274 plant samples. Figure
N.7 shows 5 of the 10 Maize (species 6) plants that have been classi�ed
incorrectly out of the 340 plant samples.

1images of all misidenti�kations can be found on the disc attached to the report

(a) Species:1 Re-
sult:2

(b) Species:1 Re-
sult:7

(c) Species:1 Re-
sult:5 Results:5
105

(d) Species:1 Re-
sult:3 Results:1
103

(e) Species:1 Re-
sult:3 Results:3
101

Figure N.1: wrong classi�cations of species 1.
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Appendix N. Wrong identi�cations

(a) Species:2 Re-
sult:4

(b) Species:2 Re-
sult:5

(c) Species:2 Re-
sult:5

(d) Species:2 Re-
sult:3

(e) Species:2 Re-
sult:3

Figure N.2: wrong classi�cations of species 2.

(a) Species:3 Re-
sult:4

(b) Species:3 Re-
sult:1 Results:1
105

(c) Species:3 Re-
sult:5

(d) Species:3 Re-
sult:4

(e) Species:3
Result:6 Re-
sults:101 206

Figure N.3: wrong classi�cations of species 3.

(a) Species:4 Re-
sult:2

(b) Species:4 Re-
sult:6 Results:6
104 104 206

(c) Species:4 Re-
sult:6 Results:6
104

(d) Species:4 Re-
sult:5 Results:4
105 105 206

(e) Species:4 Re-
sult:6 Results:4
206

Figure N.4: wrong classi�cations of species 4.

180



(a) Species:5 Re-
sult:4

(b) Species:5 Re-
sult:4

(c) Species:5 Re-
sult:7 Results:4
107

(d) Species:5 Re-
sult:6 Results:5
106 206

(e) Species:5 Re-
sult:4 Results:4
104 204

Figure N.5: wrong classi�cations of speices 5.

(a) Species:6 Re-
sult:7

(b) Species:6 Re-
sult:5 Results:6
105

(c) Species:6 Re-
sult:4 Results:4
104

(d) Species:6 Re-
sult:7 Results:6
107 207

(e) Species:6 Re-
sult:4 Results:6
204

Figure N.6: wrong classi�cations of species 6.

(a) Species:7 Re-
sult:2

(b) Species:7 Re-
sult:4

(c) Species:7 Re-
sult:3

(d) Species:7 Re-
sult:6

(e) Species:7 Re-
sult:4

Figure N.7: wrong classi�cations of species 7.
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AppendixO
Plant samples

The following �gures shows selected samples for the 12 species from the
dataset.

0 1 52 3 4 cm

(a)BBCH 10

0 1 52 3 4 cm

(b)BBCH 11

0 1 52 3 4 cm

(c)BBCH 12

0 5 20 cm10 15

(d)BBCH 14

Figure O.1: Species 1: Maize

0 1 52 3 4 cm

(a)BBCH 10

0 1 52 3 4 cm

(b)BBCH 12

0 1 52 3 4 cm

(c)BBCH 13

0 5 20 cm10 15

(d)BBCH 15

Figure O.2: Species 2: Winter Wheat
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Appendix O. Plant samples

0 1 52 3 4 cm

(a)BBCH 12

0 1 52 3 4 cm

(b)BBCH 12

0 1 52 3 4 cm

(c)BBCH 13

0 5 20 cm10 15

(d)BBCH 14

Figure O.3: Species 3: Sugar beet

0 1 52 3 4 cm

(a)BBCH 12

0 1 52 3 4 cm

(b)BBCH 12

0 1 52 3 4 cm

(c)BBCH 13
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(d)BBCH 14

Figure O.4: Species 4: Scentless mayweed
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(a)BBCH 12
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(b)BBCH 12

0 1 52 3 4 cm

(c)BBCH 14
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(d)BBCH 23

Figure O.5: Species 5: Chickweed
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(a)BBCH 14
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(b)BBCH 14
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(c)BBCH 17
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(d)BBCH 20

Figure O.6: Species 6: Shepherd's-purse
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Figure O.7: Species 7: Cleavers
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Figure O.8: Species 9: Charlock
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Figure O.9: Species 10: Fat Hen
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Appendix O. Plant samples
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Figure O.10: Species 11: Cranes-bill
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Figure O.11: Species 13: Black grass
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Figure O.12: Species 14: Loose Silky-bent
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